- 1、本文档共13页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
(计算智能理论作业
几种智能计算方法的研究及应用进展本文对几种常用的智能计算方法(遗传算法、粒子群优化算法、蚁群优化与免疫算法)的理论、特点进行了归纳总结,并对四种智能计算方法的应用范围和前景进行了概括和探讨。1、遗传算法1.1 概述遗传算法[1]是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的自适应概率性随机化迭代有哪些信誉好的足球投注网站算法。1962年霍兰德(Holland)教授首次提出了GA算法的思想,它的基本思想是基于Darwin进化论和Mendel的遗传演说。Darwin进化论最重要的是适者生存的原理,它认为每一代种群总是向着前进方向发展,越来越适应环境。每一个个体都有继承前代的特性,但不是完全继承,会产生一些新特性。最终只有适应环境的特征才能被保留下来。Mendel遗传学说最重要的是基因遗传原理,它认为遗传以密码方式存在细胞中,并以基因形式包含在染色体内。一条染色体中存在很多基因,每个基因有自己的位置并控制着外部特征;基因的产生和变异直接影响到个体的特性是否能适应环境。经过存优去劣的自然淘汰,适应性高的基因结构得以保存下来。遗传算法正是借用了仿真生物遗传学和自然选择机理,通过自然选择、遗传、变异等作用机制,实现各个个体的适应性的提高。与自然界相似,遗传算法对求解问题的本身一无所知,从代表问题可能潜在解集的一个种群(population)开始,每一个种群则由经过基因(gene)编码(coding)的一定数目的个体 (individual)构成。每个个体实际上是染色体(chromosome)带有特征的实体。把问题的解表示成染色体,并基于适应值来选择染色体,遗传算法所需要的仅是对算法所产生的每个染色体进行评价,使适应性好的染色体有更多的繁殖机会。在算法中也就是以二进制编码的串。并且,在执行遗传算法之前,给出一群染色体,也就是假设解。然后,把这些假设解置于问题的“环境”中,也即在一个适应度函数中来评价。并按适者生存的原则,从中选择出较适应环境的染色体进行复制,淘汰低适应度的个体,再通过交叉,变异过程产生更适应环境的新一代染色体群。对这个新种群进行下一轮进化,直到最适合环境的值。1.2遗传算法的基本原理和特点1.2.1 算法原理 在遗传算法中,通过随机方式产生若干个所求解问题的数字编码,即染色体,形成初始种群;通过适应度函数给每个个体一个数值评价,淘汰低适应度的个体,选择高适应度的个体参加遗传操作,经过遗传操作后的个体集合形成下一代新的种群,再对这个新种群进行下一轮进化,这就是遗传算法的基本原理。遗传算法的主要步骤如下:1)随机产生一个由确定长度的特征串组成的初始群体;2)对串群体迭代地执行步骤(1)和(2),直到满足停止准则:(1)计算群体中每个个体的适应值。(2)应用复制、杂交和变异算子产生下一代群体。3)把在任一代中出现的最好的个体串指定为遗传算法的执行结果。这个结果可以表示问题的一个解(或近似解)。基本遗传算法的流程图如图1-1,其中GEN是当前代数,M为每代种群中最大个体数。图1-1 基本遗传算法的流程图1.2.2 算法特点遗传算法的特点如下:1) 遗传算法中不包含待解决问题所持有的形态。它是从改变基因的配置来实现问题的整体优化的,因而属于自下而上的优化方法;2) 类似于生物的进化过程,遗传算法处理的是变量集合的编码而非变量本身。它直接对结构对象进行操作,不存在求导和函数连续性的限定;3) 遗传算法具有内在的隐并行性和更好的全局寻优能力;4) 遗传算法采用概率化的寻优方法,能自动获取和指导优化的有哪些信誉好的足球投注网站空间,自适应地调整有哪些信誉好的足球投注网站方向,不需要确定的规则。遗传算法的这些特点已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术之一。1.3遗传算法的应用进入90年代后,遗传算法迎来了兴盛发展时期,无论是理论研究还是应用研究都成了十分热门的课题。尤其是遗传算法的应用研究显得格外活跃,不但它的应用领域扩大,而且利用遗传进行优化和规则学习的能力也显著提高,同时产业应用方面的研究也在摸索之中。遗传算法提供了一种求解复杂系统问题的通用框架,它不依赖于问题的具体领域,对问题的种类有很强的鲁棒性,所以广泛应用于很多学科。如工程结构优化、计算数学、制造系统、航空航天、交通、计算机科学、通信、电子学、材料科学等。1)GA在数值优化上的应用最优化问题是遗传算法经典应用领域,但采用常规方法对于大规模、多峰态函数、含离散变量等问题的有效解决往往存在许多障碍。对全局变化问题,目前存在确定性和非确定性两类方法。前者以Brianin的下降轨线法、Levy的隧道法和R.Ge的填充函数为代表。该类方法虽然收敛快、计算效率高,但算法复杂,求得全局极值的概率不大。遗传算法作为现代最优化的手段,实践证明,它应用于大规模、多峰多态函数、
文档评论(0)