《遥感数字图像处理》实验报告..docxVIP

《遥感数字图像处理》实验报告..docx

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
《遥感数字图像处理》实验报告.

研究生《遥感技术原理与应用》期末考试报告题 目:利用TM遥感数据进行土地覆盖分类和制图 专 业: 地图学与地理信息系统 2015.12一、研究方法缨帽变换:也称K-T变换,是一种特殊的主成分变换。但与主成分不同,其旋转轴不是指向主成分方向,而是指向与地面景物有密切关系的方向,特别是与植物生长过程和土壤有关。传统的NDVI植被信息提取方法受到影像空间分辨率的限制,对影像上信息量少的植被(如道路两旁的行道树、居民小区中的绿地等)提取效果不佳。缨帽变换对区分不同类型植被类型如树、灌木、草地、农作物等非常有效,此次试验具有较好的应用。支持向量机分类法:是建立在统计学习理论的VC维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折中,以求获得最好的推广能力。最大似然分类法:假设每一个波段的每一类统计都呈正态分布,计算给定像元属于某一训练样本的似然度,像元最终被归并到似然度最大的一类当中。二、研究内容及数据对富民县散旦乡TM影像进行信息挖掘后突出植被和水体等地物信息;结合二调数据,选择样本,分别用最大似然和支持向量机(SVM)分类法对散旦乡进行分类,通过对比分类精度,比较两种分类方法的优缺点。数据:对富民县进行裁剪后得到的散旦乡Landsat TM影像;富民县二类调查小班数据;富民县县行政区数据。三、研究过程1.裁剪研究区域将富民县行政区数据导入ArcGIS软件中,根据属性表查找得到散旦乡数据,导入ENVI,再利用ENVI提供的不规则裁剪工具进行裁剪得到散旦乡TM影像(4,3,2假彩色合成),见图1、2。图1 散旦乡在富民县的位置图2 研究区原始影像2.缨帽变换在主菜单Transforms→Tassled Cap中使用缨帽变换对研究区影像进行正交变换,变换结果包括亮度“Brightness”、绿度“Greenness”、第三波段“Third”三个波段信息。 图3 缨帽变换结果3.归一化植被指数——NDVI的提取NDVI(Normal Differential Vegetation Index),其表达式为NDVI=(NIR-R)/(NIR+R),是基于近红外波段与红外波段的归一化比值指数。利用波段运算工具Band Math对散旦乡影像进行NDVI运算(影像中3,4波段分别代表公式中的R和NIR),得到植被指数影像。图4 NDVI提取结果4.图像合成对缨帽变换得到的绿度,NDVI得到的植被指数,以及原散旦乡TM影像的4波段进行合成,得到一张新的散旦乡影像,信息挖掘前后对比见图5。通过对比可以看出,植被及水体地物均得到了增强,为接下来影像的分类工作提供了方便。图5 原始影像(左)与信息挖掘后(右)对比5.选择训练样本在ArcGIS中,依据属性表中的class字段,根据分类要求提取6个类别的图层数据;然后导入ENVI,叠加显示在影像上(图上红色范围),然后在小班范围内勾绘的训练样本(图上蓝色区域),参考提取的小数据勾画训练样本,见图6。图6 选择训练样本6.影像分类为避免背景参与分类,使用主菜单下Basic tool→masking→build masking生成掩膜文件,然后对影像分别按照最大似然和支持向量机两种方法进行分类得到分类结果图,如图7所示。图7 最大似然(左)与支持向量机(右)分类结果图7.分类后处理分类结果中,不可避免会产生一些面积很小的图斑,需要对这些小图斑进行处理。在主菜单Classification→Post Classification中,选择Majority/Minority工具将小图斑合并到周围的大类中,分类后处理结果如图8所示。图8 最大似然(左)与支持向量机(右)分类后处理结果图8.精度检验在ENVI下打开前面用于分类的影像数据和提取出的小班数据,在Available Vectors List下选择File—>Export Layers to ROI,在弹出的对话框中选择影像数据OK,然后选择Covert each record of an EVF layer to a new ROI,将小班数据转化成ROI兴趣区;然后采用Classification—>Post Classification—>Confusion Matrix—>Using Ground Truth ROIs混淆矩阵下的地表真实训练区方法进行检验。精度结果见表1。表1 分类精度评价最大似然支持向量机类别制图精度(%)用户精度(%)制图精度(%)用户精度(%)阔叶林20.1153.847.9129.45针叶林40.0365.9768.9446.45农地67.4638.7690.8768.69裸地29.1817.6821.8818.26建筑用地52.

文档评论(0)

fg09h0as + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档