网站大量收购闲置独家精品文档,联系QQ:2885784924

(开关电源的MOS管设计.docVIP

  1. 1、本文档共12页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
(开关电源的MOS管设计

电源系统开关控制器的 MOSFET 选择 DC/DC 开关控制器的 MOSFET 选择是一个复杂的过程。仅仅考虑 MOSFET 的额定电压和电流并不足以选择到合适的 MOSFET。要想让 MOSFET 维持在规定范围以内,必须在低栅极电荷和低导通电阻之间取得平衡。在多负载电源系统中,这种情况会变得更加复杂。如 德州仪器 (TI) 的WEBENCH? 电源设计师等在线设计工具可以简化这一过程,让用户能够根据效率、体积和成本做出正确的选择,从而达到理想的 MOSFET 控制器设计目标。 图 1—降压同步开关稳压器原理图 DC/DC 开关电源因其高效率而广泛应用于现代许多电子系统中。例如,同时拥有一个高侧 FET和低侧 FET 的降压同步开关稳压器,如图 1 所示。这两个 FET 会根据控制器设置的占空比进行开关操作,旨在达到理想的输出电压。降压稳压器的占空比方程式如下: 1) 占空比 (高侧 FET) = Vout/(Vin*效率) 2) 占空比 (低侧FET) = 1 – DC (高侧FET) FET 可能会集成到与控制器一样的同一块芯片中,从而实现一种最为简单的解决方案。但是,为了提供高电流能力及(或)达到更高效率,FET 需要始终为控制器的外部元件。这样便可以实现最大散热能力,因为它让FET物理隔离于控制器,并且拥有最大的 FET 选择灵活性。它的缺点是 FET 选择过程更加复杂,原因是要考虑的因素有很多。 一个常见问题是“为什么不让这种 10A FET 也用于我的 10A 设计呢?”答案是这种 10A 额定电流并非适用于所有设计。选择 FET 时需要考虑的因素包括额定电压、环境温度、开关频率、控制器驱动能力和散热组件面积。关键问题是,如果功耗过高且散热不足,则 FET 可能会过热起火。我们可以利用封装/散热组件 ThetaJA 或者热敏电阻、FET 功耗和环境温度估算某个 FET 的结温,具体方法如下: 3) Tj = ThetaJA * FET 功耗(PdissFET) + 环境温度(Tambient) 它要求计算 FET 的功耗。这种功耗可以分成两个主要部分:AC 和 DC 损耗。这些损耗可以通过下列方程式计算得到: 4) AC损耗: AC 功耗(PswAC) = ? * Vds * Ids * (trise + tfall)/Tsw 其中,Vds 为高侧 FET 的输入电压,Ids 为负载电流,trise 和 tfall 为 FET 的升时间和降时间,而Tsw 为控制器的开关时间(1/开关频率)。 5) DC 损耗: PswDC = RdsOn * Iout * Iout * 占空比 其中,RdsOn 为 FET 的导通电阻,而 Iout 为降压拓扑的负载电流。 其他损耗形成的原因还包括输出寄生电容、门损耗,以及低侧 FET 空载时间期间导电带来的体二极管损耗,但在本文中我们将主要讨论 AC 和 DC 损耗。 开关电压和电流均为非零时,AC 开关损耗出现在开关导通和关断之间的过渡期间。图 2 中高亮部分显示了这种情况。根据方程式 4),降低这种损耗的一种方法是缩短开关的升时间和降时间。通过选择一个更低栅极电荷的 FET,可以达到这个目标。另一个因数是开关频率。开关频率越高,图 3 所示升降过渡区域所花费的开关时间百分比就越大。因此,更高频率就意味着更大的AC开关损耗。所以,降低 AC 损耗的另一种方法便是降低开关频率,但这要求更大且通常也更昂贵的电感来确保峰值开关电流不超出规范。 图 2—AC 损耗图 图 3—开关频率对 AC 损耗的影响 开关处在导通状态下出现 DC 损耗,其原因是 FET 的导通电阻。这是一种十分简单的 I2R 损耗形成机制,如图 4 所示。但是,导通电阻会随 FET 结温而变化,这便使得这种情况更加复杂。所以,使用方程式 3)、4)和 5)准确计算导通电阻时,就必须使用迭代方法,并要考虑到 FET 的温升。降低 DC 损耗最简单的一种方法是选择一个低导通电阻的 FET。另外,DC 损耗大小同FET 的百分比导通时间成正比例关系,其为高侧 FET控制器占空比加上 1 减去低侧 FET 占空比,如前所述。由图 5 我们可以知道,更长的导通时间就意味着更大的DC 开关损耗,因此,可以通过减小导通时间/FET 占空比来降低 DC 损耗。例如,如果使用了一个中间 DC 电压轨,并且可以修改输入电压的情况下,设计人员或许就可以修改占空比。 图 4—DC 损耗图 图 5—占空比对 DC 损耗的影响 尽管选择一个低栅极电荷和低导通电阻的 FET 是一种简单的解决方案,但是需要在这两种参数之间做一些折中和平衡,如图 6 所示。低栅极电荷通常意味着更小的栅极面积/更少的并联晶体管,以及由此带来的

文档评论(0)

jishu9527 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档