网站大量收购独家精品文档,联系QQ:2885784924

第三章 空域图像增强(2016C).ppt

  1. 1、本文档共176页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Convolution (1D) 1 1 2 2 1 1 2 2 1 1 1 2 1 Convolution (1D) 1 1 2 2 1 1 2 2 1 1 1 2 1 1 1 2 2 1 1 2 2 1 1 1 2 1 Convolution (1D) Convolution (1D) 1 1 2 2 1 1 2 2 1 1 1 2 1 Convolution (1D) 1 1 2 2 1 1 2 2 1 1 1 2 1 This process is called Convolution!! Math of convolution g(x): output, h: filter, “*” means convolution, f(x): input, n = INT[ width of filter/2 ]. INT[ ]: rounds down, for example: INT[1.7]=1. MATLAB code: floor(width/2). 1 2 1 h(-1)=1 h(0)=2 h(1)=1 Formula: for example: filter (h): width = 3 = n = 1 Math of convolution x is the pixel of interest, i.e., the position in the signal/image and the center of the filter. 1 1 2 2 1 1 2 2 1 1 1 2 1 f(x) i =-1 = f(x+1) =2 i = 0 = f(x) = 1 i = 1 = f(x-1) = 1 f(x+1) f(x-1) Formula: Math of convolution 1 1 2 2 1 1 2 2 1 1 1 2 1 f(x) Correlation (1D) 1 1 2 2 1 1 2 2 1 1 1 2 1 Normalized filter response filter Input signal/Image-row Output signal/Image-row Filter coefficients Correlation vs. Convolution 1 1 2 2 1 1 2 2 1 1 1 2 1 1 1 2 2 1 1 2 2 1 1 1 2 1 Corr. Conv. In image processing we use CORRELATION but (nearly) always call it CONVOLUTION!!!!! Note: When the filter is symmetric: correlation = convolution! Convolution/correlation on images The filter is now 2D Kernel (mask), kernel coefficients Size: 3x3, 5x5, 7x7, …. 1 1 1 1 1 1 1 1 1 0 2 1 2 1 2 1 2 5 3 1 3 2 2 0 1 1 2 0 2 1 4 1 0 1 Input Output Normalization 1 1 1 1 1 1 1 1 1 0 2 1 2 1 2 1 2 5 3 1 3 2 2 0 1 1 2 0 2 1 4 1 0 1 Input Output Convolution/correlation on images Convolution/correlation on images 0 2 1 2 1 2 1 2 5 3 1 3 2 2 0 1 1 2 0 2 1 4 1 0 1 1 1 1 1 1 1 1 1 1 Input Output Convolution/correlation on images 0 2 1 2 1 2 1 2 5 3 1 3 2 2 0 1 1 2 0 2 1 4 1 0 1 1 1 1 1 1 1 1 1 1 Input ... ... ... ... ... ... ... Output Math. of 2D Convolution/Correlation 1 1 1 1 1 1 1 1 1 Convolution: Correlation: Note: When the filter is symmetric: correlation = convolution ! 2 3 2 -1 0 -1 2 3 2 Problems at the borders 0 2 1 2 1 2 1 2 5 3 1 3 2 2 0 1 1 2 0 2 1 4 1

文档评论(0)

整理王 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档