3国立联合大学资讯管理学系资料探勘课程(陈士杰).ppt

3国立联合大学资讯管理学系资料探勘课程(陈士杰).ppt

  1. 1、本文档共70页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
3国立联合大学资讯管理学系资料探勘课程(陈士杰)

Data Mining: Concepts and Techniques Course 2 資料預處理 Data Preprocessing ? Outline Why preprocess the data? (為何要做資料的預處理) Descriptive data summarization (資料的摘要性描述) Data cleaning (資料清理) Data integration and transformation (資料整合與轉換) Data reduction (資料縮減) Discretization and concept hierarchy generation (離散化與概念分層的產生) Summary ? Why Data Preprocessing? Data in the real world is dirty – 只要人一多,什麼樣的怪腳都可能會出現!! Incomplete (不完整的): lacking attribute values, lacking certain attributes of interest e.g., occupation=“ ” Noisy (含噪音的): containing errors or outliers e.g., Salary=“-10” Inconsistent (不一致的): containing discrepancies in codes or names e.g., Age=“42” Birthday=“03/07/1997” e.g., Was rating “1,2,3”, now rating “A, B, C” e.g., discrepancy between duplicate records Why Is Data Dirty? Incomplete data may come from “Not applicable (不合用)” data value when collected Different considerations between the time when the data was collected and when it is analyzed. Human/hardware/software problems Noisy data (incorrect values) may come from Faulty data collection instruments (如: 問卷設計不良) Human or computer error at data entry Errors in data transmission Inconsistent data may come from Different data sources Functional dependency (功能相依性) violation (e.g., modify some linked data) Why Is Data Preprocessing Important? No quality data, no quality mining results! Quality decisions must be based on quality data e.g., duplicate or missing data may cause incorrect or even misleading statistics. Data warehouse needs consistent integration of quality data Data extraction, cleaning, and transformation comprises the majority of the work of building a data warehouse Multi-Dimensional Measure of Data Quality A well-accepted multidimensional view: Accuracy (精確性) Completeness (完整性) Consistency (一致性) Timeliness (及時性) Believability (可信度) Value added (附加價值) Interpretability (可解釋性) Accessibility (易接受) Major Tasks in Data Preprocessing Data cleaning (資料清理) Fill in missing values, smooth noisy data, identify or

文档评论(0)

75986597 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档