- 1、本文档共5页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
线性方程组的多种求解问题
线性平稳过程论文:线性平稳序列自协方差函数的渐近分布
【中文摘要】时间序列分析的许多基本结果建立在其多个样本自协方差函数联合服从渐近正态分布的基础上。本文针对线性平稳序列的若干个样本自协方差函数,讨论其联合渐近分布问题。众所周知,在个数事先固定后,样本自协方差函数的联合渐近正态是一个著名的结果,是时间序列拟合优度检验,比如独立同分布白噪声检验,的一个基本理论依据。然而在实际应用中,我们经常是先得知样本的容量n,然后选取某个m,把m看成是固定,之后引用上面的经典结论。因此研究个数m随着样本容量n变化时样本自协方差函数的联合渐近分布问题是很有实际意义的。所以本文讨论的第一个问题是,对于线性平稳序列,对给定的观测数据个数n,应该选取什么样的m(n),能够保证其样本自协方差函数{(?)n,j=0,1,…,m(n)}(按照某种方式)渐近服从多元正态分布。正如Keenan,D.M.(1997)指出的那样,对于这种维数变化的随机向量的渐近分布,用定义在(R∞,R∞)上的传统弱收敛并不恰当。Keenan,D.M.(1997)提出的处理这种情形的方法是考虑一致弱收敛,得到了当{xt}t=1∞为一个严平稳强混合序列,并且满足一定的假设条件,在mlog(mlogm)=O(logn)时,样本自协方差函数{(?)n,j=0,1,…,m(n))一致弱收敛到一个多元正态分布。本文在Keenan,D.M.(1997)的基础上,讨论了应用中更为广泛的线性平稳序列的m(n)维样本自协方差函数的一致弱收敛性问题,我们给出了不完全于Keenan,D.M.(1997)的证明。受近些年来人们广泛使用的线性组合的分布收敛做法,我们考虑了m(n)维样本自协方差函数线性组合的弱收敛问题,这是本文讨论的第二个问题。我们将Richad Lewis and Gregory C.Reinsel(1985)的方法运用到无穷维样本自协方差函数的渐近分布,得到了在一定条件下m(n)维样本自协方差函数的线性组合弱收敛到正态分布。本文讨论的第三个问题是,对于维数变化的随机向量序列,其联合分布的一致弱收敛与其线性组合的弱收敛之间有怎样的关系呢?我们通过一个例子表明,随机向量线性组合的弱收敛似乎要比其联合分布的一致弱收敛弱。但是,两者内在的关联还在进一步的探讨当中。本文的最后一部分进行了大量的模拟,通过选取不同的样本容量n和不同的维数m,给出了统计量Q(m),通过重复,我们得到了3000个Q(m)的值,得到Q(m)的经验分布,对其与自由度为m的χ2分布进行拟合比较。和理论上一致,我们发现确实当m较小时,Q(m)的经验分布函数近似为χ2(m)分布,从而样本自协方差函数的联合分布与正态分布接近,但是当m较大时,两者相差较远。
【英文摘要】Lots of the fundamental results in time series analysis depend on the asymptotic normality of the sample autocovariances.This paper discusses the asymptotic distribution for the sample autocovariances of linear stationary processes.The joint asymptotic normality of a fixed number m of sample auto-covariances is a well-known result and has been fundamental criterion in the time series goodness-of-fit tests.However,in practice,m is often chosen after the number of observations n,then treated m as fixed.Therefore,the first ques-tion we discussed in this paper is how to select a appropriate function of n ,so that asymptotic normality of the sample autocovariances{(?)[cn(j)-r(j)],j=0,1,…,m(n)} can be verified for a large amount of n.For the asymptotic distribution of the random vector that dimension is varying with n,the traditional weak c
文档评论(0)