基于空间模糊聚类的图像分割优化算法要点.doc

基于空间模糊聚类的图像分割优化算法要点.doc

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于空间模糊聚类的图像分割优化算法要点

深圳大学研究生课程论文 题目 基于空间模糊聚类的图像分割优化算法 成绩 专业 信息与通信工程 课程名称、代码 模糊数学理论 年级 研一 姓名 梁运恺 同组人 叶 韩 学号 2150130406 2150130407 时间 2015/1/6 任课教师 李良群 基于空间模糊聚类的图像分割优化算法 【摘要】针对传统模糊C-均值(FCM)算法抗噪性能差的问题,提出一种新的基于空间模糊聚类的图像分割优化算法。该算法通过在传统FCM 算法基础上加入图像特征项中像素间的空间位置信息,解决了传统FCM对噪声敏感的问题,增强了算法的鲁棒性。实验结果表明,该算法可实现有效分割,分割效果显著优于传统FCM 算法。 【关键词】图像分割;模糊聚类;FCM 算法;空间位置信息; The Spatial Fuzzy Clustering Optimization Algorithm for Image Segmentation Abstract: For the poor anti-noise performance limitations of the traditional fuzzy C-means (FCM) algorithm. We proposed a new spatial fuzzy clustering optimization algorithm for image segmentation .we added a wealth of spatial information between pixels in the image feature items, so that the traditional FCM sensitive to noise was solved. And the robustness of the algorithm was enhanced. Experimental results show that our algorithm can achieve the effective segmentation the noise images. And the results are significantly better than those by traditional FCM image segmentation algorithm. Keywords: image segmentation; fuzzy clustering; FCM algorithm; spatial information 引言 图像分割是图像处理到图像分析的关键步骤,是进一步理解图像的基础。图像分割本质上是基于某种相似性准则对像素进行分类,在期望的分割结果中,属于同类的像素特征不仅在数值上相似,其空间位置信息也有紧密联系。数据聚类方法对图像进行分割具有直观和易于实现的特点,其中最有效的是模糊C-均值(Fuzzy C-means ,FCM)聚类算法。但传统的FCM 算法未考虑图像的空间信息,在处理受噪声污染的图像时常会得到不理想的分割结果,因此,本文提出一种改进的FCM 算法。针对传统FCM算法在分割过程中只考虑本地信息的问题,本文算法加入有影响力的特征因子,即空间位置信息。实验结果表明,本文算法可显著抑制噪声并保留实际图像的特征。 FCM聚类简介 2.1 模糊集合基本知识 首先说明隶属度函数的概念。隶属度函数是表示一个对象xA的程度的函数,通常记做μA(x),其自变量范围是所有可能属于集合A的对象(即集合A所在空间中的所有点),取值范围是[0,1],即0=μA(x)=1。μA(x)=1表示x完全隶属于集合A,相当于传统集合概念上的x∈A。一个定义在空间X={x}上的隶属度函数就定义了一个模糊集合A,或者叫定义在论域X={x}上的模糊子集。对于有限个对象x1,x2,……xn模糊集合可以表示为: 有了模糊集合的概念,一个元素隶属于模糊集合就不是硬性的了,在聚类的问题中,可以把聚类生成的簇看成模糊集合,因此,每个样本点隶属于簇的隶属度就是[01]区间里面的值。 2.2 C均值聚类 C均值聚类也称K均值聚类(K-Means),已经应用到各种领域。它的核心思想如下:算法把n个向量xj(1,2…,n)分为c个组Gi(i=1,2,…,c),并求每组的聚类中心,使

文档评论(0)

此项为空 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档