用BP网络逼近非线性函数f(x)=sin2x+cos5x.docx

用BP网络逼近非线性函数f(x)=sin2x+cos5x.docx

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
用BP网络逼近非线性函数f(x)=sin2xcos5x

智能技术实验三 -BP程序的算法设计1熟悉BP网络的基本训练算法程序,练习课件上的相关程序。(1)用BP网络逼近非线性函数f(x)=sin2x+cos5x程序:x=-0.8:0.05:0.75;t=sin(2*x)+cos(5*x);net=newff(minmax(x),[12,1],{tansig,purelin},trainbfg,learngdm,sse);%利用准牛顿反向传播算法对网络进行训练,动量梯度下降权值与阈值的学习net.trainParam.epochs=1500;%训练步数net.trainParam.goal=0;%训练目标误差net.trainParam.lr=1.42;%学习速率net.trainParam.show=100;%现实训练结果的间隔步数[net,Tr]=train(net,x,t);x1=-0.77:0.05:0.78;y1=sim(net,x1);x2=0.75:0.05:0.95;%外推t2=sin(2*x2)+cos(5*x2);y2=sim(net,x2);e=y2-t2;xwc=e./t2;%相对误差figure(2)subplot(211)plot(x,t,ko,x,t,k-,x1,y1,k*,x1,y1,k-);xlabel(自变量x)ylabel(函数值)subplot(212)plot(x2,e,k.,x2,e,k-)xlabel(自变量x)ylabel(函数误差值e)运行结果:(2)BP网络在故障诊断中的应用程序:P=[0.2286 0.1292 0.0720 0.1592 0.1335 0.0733 0.1159 0.0940 0.0522 0.1345 0.0090 0.1260 0.3619 0.0690 0.1828; 0.2090 0.0947 0.1393 0.1387 0.2558 0.0900 0.0771 0.0882 0.0393 0.1430 0.0126 0.1670 0.2450 0.0508 0.1328; 0.0442 0.0880 0.1147 0.0563 0.3347 0.1150 0.1453 0.0429 0.1818 0.0378 0.0092 0.2251 0.1516 0.0858 0.0670; 0.2603 0.1715 0.0702 0.2711 0.1491 0.1330 0.0968 0.1911 0.2545 0.0871 0.0060 0.1793 0.1002 0.0789 0.0909; 0.3690 0.2222 0.0562 0.5157 0.1872 0.1614 0.1425 0.1506 0.1310 0.0500 0.0078 0.0348 0.0451 0.0707 0.0880; 0.0359 0.1149 0.1230 0.5460 0.1977 0.1248 0.0624 0.0832 0.1640 0.1002 0.0059 0.1503 0.1837 0.1295 0.0700; 0.1759 0.2347 0.1829 0.1811 0.2922 0.0655 0.0774 0.2273 0.2056 0.0925 0.0078 0.1852 0.3501 0.1680 0.2668; 0.0724 0.1909 0.1340 0.2409 0.2842 0.0450 0.0824 0.1064 0.1909 0.1586 0.0116 0.1698 0.3644 0.2718 0.2494; 0.2634 0.2258 0.1165 0.1154 0.1074 0.0657 0.0610 0.2623 0.2588 0.1155 0.0050 0.0978 0.1511 0.2273 0.3220];T=[1 0 0;1 0 0;1 0 0;0 1 0;0 1 0;0 1 0;0 0 1;0 0 1;0 0 1];%输入向量的最大值与最小值threshold=[0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];net=newff(threshold,[31,3],{tansig,logsig},trainlm);%训练次数为50,训练目标为0.001,学习速率为0.1net.trainParam.epochs=50;net.trainParam.goal=0.001;LP.lr=0.1;net=train(net,P,T);%测试数据test=[0.2593 0.1800 0.0711 0.2801 0.1501 0.1298 0.1001 0.1891 0.2531 0.0875 0.0058 0.18

文档评论(0)

kakaxi + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档