(一)双向板按弹性理论的计算方法.doc

  1. 1、本文档共26页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
(一)双向板按弹性理论的计算方法

  (一)双向板按弹性理论的计算方法   1.单跨双向板的弯矩计算   为便于应用,单跨双向板按弹性理论计算,已编制成弯矩系数表,供设计者查用。在教材的附表中,列出了均布荷载作用下,六种不同支承情况的双向板弯矩系数表。板的弯矩可按下列公式计算:         M = 弯矩系数×(g+p)lx2 式中M 为跨中或支座单位板宽内的弯矩(kN·m/m);   g、p为板上恒载及活载设计值(kN/m2);   lx为板的跨度(m)。            2.多跨连续双向板的弯矩计算   (1)跨中弯矩 双向板跨中弯矩的最不利活载位置图   多跨连续双向板也需要考虑活载的最不利位置。当求某跨跨中最大弯矩时,应在该跨布置活载,并在其前后左右每隔一区格布置活载,形成如上图(a)所示棋盘格式布置。图(b)为A-A剖面中第2、第4区格板跨中弯矩的最不利活载位置。   为了能利用单跨双向板的弯矩系数表,可将图(b)的活载分解为图(c)的对称荷载情况和图(d)的反对称荷载情况,将图(c)与(d)叠加即为与图(b)等效的活载分布。   在对称荷载作用下,板在中间支座处的转角很小,可近似地认为转角为零,中间支座均可视为固定支座。因此,所有中间区格均可按四边固定的单跨双向板计算;如边支座为简支,则边区格按三边固定、一边简支的单跨双向板计算;角区格按两邻边固定、两邻边简支的单跨双向板计算。   在反对称荷载作用下,板在中间支座处转角方向一致,大小相等接近于简支板的转角,所有中间支座均可视为简支支座。因此,每个区格均可按四边简支的单跨双向板计算。   将上述两种荷载作用下求得的弯矩叠加,即为在棋盘式活载不利位置下板的跨中最大弯矩。            (2)支座弯矩   支座弯矩的活载不利位置,应在该支座两侧区格内布置活载,然后再隔跨布置,考虑到隔跨活载的影响很小,可假定板上所有区格均满布荷载(g+p)时得出的支座弯矩,即为支座的最大弯矩。这样,所有中间支座均可视为固定支座,边支座则按实际情况考虑,因此可直接由单跨双向板的弯矩系数表查得弯矩系数,计算支座弯距。当相邻两区格板的支承情况不同或跨度(相差小于20%)不等时,则支座弯距可偏安全地取相邻两区格板得出的支座弯矩的较大值。            (二)双向板按塑性理论的计算方法   1.双向板的塑性铰线及破坏机构   (1)四边简支双向板的塑性铰线及破坏机构 (a)简支双向板的裂缝分布图 (b)简支双向板的塑性铰线及破坏机构图   均布荷载作用的四边简支双向板,板中不仅作用有两个方向的弯矩和剪力,同时还作用有扭矩。由于短跨方向弯矩较大,故第一批裂缝出现在短跨跨中的板底,且与长跨平行(上图a)。近四角处,弯矩减小,而扭矩增大,弯矩和扭矩组合成斜向主弯矩。随荷载增大,由于主弯矩的作用,跨中裂缝向四角发展。继续加大荷载,短跨跨中钢筋应力将首先到达屈服,弯矩不再增加,变形可继续增大,裂缝开展,使与裂缝相交的钢筋陆续屈服,形成如上图(b)所示的塑性铰线,直到塑性铰线将板分成以“铰轴”相连的板块,形成机构,顶部混凝土受压破坏,板到达极限承载力。   由于塑性铰线之间的板块处于弹性阶段,变形很小,而塑性铰线截面已进入屈服状态,有很大的局部变形。因此,在均布荷载作用下,可忽略板块的弹性变形,假设各板块为刚片,变形(转角)集中于塑性铰线处,塑性铰线为刚片(板块)的交线,故塑性铰线必定为直线。当板发生竖向位移时,各板块必各绕一旋转轴发生转动。例如上图(b)中板块A绕ab轴(支座)转动,板块B绕ad轴(支座)转动。因此两相邻板块之间的塑性铰线ea必然通过两个板块旋转轴的交点a。上述塑性铰线的基本特征,可用来推断板形成机构时的塑性铰线位置。            (2)四边连续双向板的塑性铰线及破坏机构 均布荷载作用下四边连续双向板的塑性铰线及破坏机构图   当板为四边连续板时,最大弯矩位于短跨的支座处,因此第一批裂缝出现在板顶面沿长边支座上,第二批裂缝出现在短跨跨中的板底或板顶面沿短边支座上(由于长跨的支座负弯矩所产生的)。随荷载增加,短跨跨中裂缝分叉向四角发展,四边连续板塑性铰线的形成次序是,短跨支座截面负弯矩钢筋首先屈服,弯矩不再增加,然后短跨跨中弯矩急剧增大,到达屈服。在短跨支座及跨中截面屈服形成塑性铰线后,短跨方向刚度显著降低。继续增加的荷载将主要由长跨方向负担,直到长跨支座及跨中钢筋相继屈服,形成机构,到达极限承载力,其塑性铰线如上图所示。与简支板不同的是四边连续板支座处的塑性铰代替了简支板支座的实际铰。            2.均布荷载作用下双向板的极限荷载 双向板四个板块的极限平衡受力图   (1)按塑性理论计

文档评论(0)

daoqqzhuan2 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档