- 1、本文档共17页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
智能控制题目及解答
智能控制题目及解答
第一章 绪论 作业作业内容 1
2. 智能控制系统有哪几种类型,各自的特点是什么?
3. 比较智能控制与传统控制的特点。
4. 把智能控制看作是AI(人工智能)、OR(运筹学)、AC(自动控制)和IT(信息论)的交集,其根据和内涵是什么?
5. 智能控制有哪些应用领域?试举出一个应用实例,并说明其工作原理和控制性能。 1 答:智能:能够自主的或者交互的执行通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习等一系列活动的能力,即像人类那样工作和思维。
智能系统:是指具有一定智能行为的系统,对于一定的输入,它能产生合适的问题求解相应。
智能控制:智能控制是控制理论、计算机科学、心理学、生物学和运筹学等多方面综合而成的交叉学科,它具有模仿人进行诸如规划、学习、逻辑推理和自适应的能力。是将传统的控制理论与神经网络、模糊逻辑、人工智能和遗传算法等实现手段融合而成的一种新的控制方法。
2 答:(1)人作为控制器的控制系统:人作为控制器的控制系统具有自学习、自适应和自组织的功能。
(2)人-机结合作为作为控制器的控制系统:机器完成需要连续进行的并需快速计算的常规控制任务,人则完成任务分配、决策、监控等任务。
(3)无人参与的自组控制系统:为多层的智能控制系统,需要完成问题求解和规划、环境建模、传感器信息分析和低层的反馈控制任务。
3 答:在应用领域方面,传统控制着重解决不太复杂的过程控制和大系统的控制问题;而智能控制主要解决高度非线性、不确定性和复杂系统控制问题。
在理论方法上,传统控制理论通常采用定量方法进行处理,而智能控制系统大多采用符号加工的方法;传统控制通常捕获精确知识来满足控制指标,而智能控制通常是学习积累非精确知识;传统控制通常是用数学模型来描述系统,而智能控制系统则是通过经验、规则用符号来描述系统。
在性能指标方面,传统控制有着严格的性能指标要求,智能控制没有统一的性能指标,而主要关注其目的和行为是否达到。
但是,智能控制与传统的或常规的控制有密切的关系,互相取长补短,而并非互相排斥。基于智能控制与传统控制在应用领域方面、理论方法上和性能指标等方面的差异,往往将常规控制包含在智能控制之中,智能控制也利用常规控制的方法来解决“低级”的控制问题,力图扩充常规控制方法并建立一系列新的理论与方法来解决更具有挑战性的复杂控制问题。
4 答:人工只能(AI)是一个用来模拟人思维的知识处理系统,具有学习、记忆、信息处理、形式语言、启发推理等功能;自动控制(AC)描述系统的动力学特性,是一种动态反馈;运筹学(OR)是一种定量优化方法,如线性规划、网络规划、调度、管理、优化决策和多目标优化方法等;信息论(IT)信息论是运用概率论与树立统计的方法研究信息、通信系统、数据传输、密码学、数据压缩等问题的应用数学学科。
早期产生的的二元结构被发现是很大程度上局限于符号主义的人工智能,无助于智能控制的有效的、成功的应用,所以后来又引入了运筹学。考虑到信息论对知识和智能的解释作用、控制论和系统论与信息之间的密切关系、信息论对智能控制的作用等方面的因素之后,蔡自兴教授创新性的提出了四元结构,即在三原结构的基础上增加了信息论作为智能控制的一个重要组成部分。智能控制作为一门交叉的学科,所用到的知识都包含这几门学科的内容,所以说可以把智能控制看成是这几门的交集。
5 答:主要应用领域:智能机器人控制、计算机集成制造系统、工业过程控制、航空航天控制、社会经济管理系统、交通运输系统、环保及能源系统。
实例应用:机器人运动轨迹控制。
机器人腿部机构由连杆和连接在其端部的从动滚轮组成。机器人行走是通过后部两条腿的两个连杆带动从动滚轮向后作类似于滑冰动作的后蹬动作实现。此类机器人也称滑冰机器人。机器人的行走方向和轨迹通过同时调整几个从动滚轮的方向角来控制。这是一个多自由度、非线性、强耦合的系统,用常规控制器对单个从动滚轮方向角, 难以实现精确的轨迹控制。针对上述控制对象运动轨迹控制问题,作者提出了一种基于模糊神经网络自适应控制方法。该方法利用模糊神经网络来辩识机器人的逆动力学模型,并以此模型作为控制器提供给机器人主要的广义驱动力, 加上常规的PD 控制器构成完整的控制系统。当模糊神经网络模型给出的驱动力合适, 系统误差小, PD 控制器的控制作用就很弱; 反之, PD 控制器起主要作用。模糊规则的制定是利用PD 控制器提取初始模糊规则,利用专家经验对初始规则进行补充, 最后利用误差的反向传播算法对参数进行在线自适应调整。文献给出的验证结果表明该方法很好的解决了该种机器人的运动轨迹控制问题。这种方法的优点是利用智能控制理论解决运动轨迹控制问题, 利用常规控制方法解决控制系统抗干扰的问题。
① 举例
文档评论(0)