- 1、本文档共4页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
DCT系数量化对图像压缩质量的影响
作业二
DCT系数量化对图像压缩质量的影响
一、实验内容
用Matlab实现基于DCT的静态图像压缩,并讨论在对图像进行DCT变换后产生的DCT系数如何取舍、近似,并分析DCT系数量化对压缩质量和压缩比例的影响。
二、实验背景
图像数据的一个显著特点就是信息量大。组成图像的各像素之间,无论是在行方向还是在列方向上都存在着一定的相关性。应用某种编码方法提取或者减少这种相关性,就可以达到压缩数据的目的。所谓的图像压缩编码技术就是对要处理的图像源数据按一定的规则进行变换和组合,从而达到以尽可能少的代码(符号)来表示尽可能多的数据信息。
目前的编码技术很多,其中应用最广泛的方法之一就是基于离散余弦(DCT)的混合编码技术。它不仅能获得高压缩率,更重要的是计算复杂度低,易于硬件实现等优点,被大多数国际图像、视频压缩标准推荐为核心压缩算法。
Kuan Hui Tan 和 Mohammad Ghanbari 提出了DCT的层式结构,是一种多分辨率分解形式的DCT编码:把原始图像经过 2D-DCT 后的图像分为4个块,再把具有相同频带子块按原来的空间位置组合成同频子带,接着对低频子带进行逆 DCT(IDCT),得到的图像作为第二层输入图像,并重复上述过程,直到最后一层。这样使得DCT同样具有WT相近的性能,解决了WT用于视频压缩编码会面临与相对成熟的运动估计和运动补偿算法不匹配的问题等。
当前 DCT 的主要研究方向之一是提高 DCT 压缩计算效率以及硬件实现。例如:根据图像数据为整数的特点,提出一种8×8整型 DCT/IDCT 变换算法,基于DSP或其它嵌入式芯片的 8×8 DCT算法实现等。
三、实验原理
离散余弦变换(DCT)是一种实数域变换,其变换核为实数余弦函数,计算速度较快,而且对于具有一阶马尔科夫过程的随机信号,DCT十分接近KL变换,也就是说它是一种近似的最佳变换,很适合用于图像压缩。
DCT 数据压缩的基本思想是:由于DCT 的“能量聚集”特性,可以得知变换后的数据点之间的欧式距离中前面少数维的贡献最大,后面大部分的坐标分量趋近为零,对距离的贡献非常小。对一幅图像进行离散余弦变换后,许多有关图像的重要可视信息都集中在DCT变换的一小部分系数中。也就是说,可以通过损失较小的空间信息——舍弃大部分后面多余维数,来达到降低处理数据的维数。当然舍弃维数的多少应当视不同的数据变换后的能量聚集情况以及所能忍受的精度有所不同。这也是 DCT 数据压缩的本质含义。DCT数据压缩放弃高频系数,并对余下系数进行量化减小数据量。
二维离散余弦正变换公式为:
式中,。
二维离散余弦逆变换公式为
式中,。
JPEG采用的是8×8大小的子块的二维离散余弦变换。在编码器的输入端,把原始图像顺序地分割成一系列8×8的子块,子块的数值在-128到127之间。采用余弦变换获得64个变换系数。
变换公式,如式所示。
式中,。
DCT变换的实现常用三种方法,一种是基于FFT的快速算法;一种是蝶型算法(一般是8×8DCT);另一种是DCT变换矩阵方法。变换矩阵方法非常适合做8×8图像块的DCT变换。Matlab提供了dctmtx函数来计算变换矩阵。一个M×M的变换矩阵T定义为:
则X的DCT变换Y为Y=T X TT。
系数量化是一个十分重要的过程,是造成DCT编解码信息损失(或失真)的根源。量化的作用是在一定的主观保真度图像质量的前提下,丢掉那些对视觉影响不大的信息,以获得较高的压缩比。由于DCT系数包含了空间频率信息,可充分利用人眼对不同频率敏感程度不同这一特性来选择量化表中的元素值的大小,对视觉重要的系数采用细量化(量化步长较小),如低频系数被细量化,对高频系数采用粗量化(量化步长较大)。
量化的目的是减小非“0”系数的幅度以及增加“0”之系数的数目,一般情况下都使用均匀量化器进行量化,量化步长是按照系数所在的位置和每种颜色分量的色调值来确定,因为人眼对亮度信号比对色差信号更敏感,因此使用了两种量化表,一个是亮度量化表,一个是色度量化表。此外,由于人眼对低频分量的图像比对高频分量的图像更敏感,因此量化表中的左上角的量化步长一般要比右下角的量化步长小,量化机要使得大部分数据得以压缩,同时又要保证通过量化和编码之后能输出一个与信道传输速率匹配的比特流。
利用离散余弦变换(DCT)进行图像压缩,首先要将输入的图像分解成8*8的块,然后对每个块进行二维离散变换,最后将变换得到的DCT系数进行编码和传送,解码时对每个块进行二维DCT反变换。最后再将反变换后的块组合一幅图像,对于通常的图像来说,大多数的DCT系数的值非常接近于0,如果舍弃这些接近于0的值,在重构图像时并不会带来图像画面质量的显著下降。
四、实验步骤
具体
文档评论(0)