- 1、本文档共29页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Dual Coordinate Descent Algorithms for EfficientLarge Margin Structured Prediction
Ming-Wei Chang and Scott Wen-tau Yih
Microsoft Research
1
Motivation
Many NLP tasks are structured
Parsing, Coreference, Chunking, SRL, Summarization, Machine translation, Entity Linking,…
Inference is required
Find the structure with the best score according to the model
Goal: a better/faster linear structured learning algorithm
Using Structural SVM
What can be done for perceptron?
2
Two key parts of Structured Prediction
Common training procedure (algorithm perspective)
Perceptron:
Inference and Update procedures are coupled
Inference is expensive
But we only use the result once in a fixed step
3
Observations
4
Observations
Inference and Update procedures can be decoupled
If we cache inference results/structures
Advantage
Better balance (e.g. more updating; less inference)
Need to do this carefully…
We still need inference at test time
Need to control the algorithm such that it converges
5
Questions
Can we guarantee the convergence of the algorithm?
Can we control the cache such that it is not too large?
Is the balanced approach better than the “coupled” one?
6
Contributions
We propose a Dual Coordinate Descent (DCD) Algorithm
For L2-Loss Structural SVM; Most people solve L1-Loss SSVM
DCD decouples Inference and Update procedures
Easy to implement; Enables “inference-less” learning
Results
Competitive to online learning algorithms; Guarantee to converge
[Optimization] DCD algorithms are faster than cutting plane/ SGD
Balance control makes the algorithm converges faster (in practice)
Myth
Structural SVM is slower than Perceptron
7
Outline
Structured SVM Background
Dual Formulations
Dual Coordinate Descent Algorithm
Hybrid-Style Algorithm
Experiments
Other possibilities
8
Structured Learning
9
The Perceptron Algorithm
10
Structural SVM
Objective function
Distance-Augmented Argmax
11
Dual formulation
12
Outline
Structured SVM Background
Dual Formu
您可能关注的文档
- Document Analysis TeacherWeb文献分析teacherweb.ppt
- Document Design Weber State University文件设计韦伯州立大学.ppt
- Documenting a Dying Language University of 记录一个垂死的语言大学.ppt
- DOCUMENT TITLE SECOND LINE AND THIRD LINE 文件标题二号线和第三号线.pptx
- Dodge City, Kansas USD 281美国堪萨斯的道奇城281.pptx
- Documents officiels ORBi Home文件或officiels 首页.ppt
- Documenting the Family History An Overview of 记录家族病史的概述.ppt
- Documenting Sources s文件来源.bellevuecollege.pptx
- documents文件.routledgeinteractive.s3.amazonaws.pptx
- DOE Lessons Learned from SF6 Reductions从SF6减少学习DOE的教训.pptx
文档评论(0)