网站大量收购闲置独家精品文档,联系QQ:2885784924

Dual Coordinate Descent Algorithms for Efficient Large Margin有效大幅度的双坐标下降算法.pptx

Dual Coordinate Descent Algorithms for Efficient Large Margin有效大幅度的双坐标下降算法.pptx

  1. 1、本文档共29页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Dual Coordinate Descent Algorithms for Efficient Large Margin Structured Prediction Ming-Wei Chang and Scott Wen-tau Yih Microsoft Research 1 Motivation Many NLP tasks are structured Parsing, Coreference, Chunking, SRL, Summarization, Machine translation, Entity Linking,… Inference is required Find the structure with the best score according to the model Goal: a better/faster linear structured learning algorithm Using Structural SVM What can be done for perceptron? 2 Two key parts of Structured Prediction Common training procedure (algorithm perspective) Perceptron: Inference and Update procedures are coupled Inference is expensive But we only use the result once in a fixed step 3 Observations 4 Observations Inference and Update procedures can be decoupled If we cache inference results/structures Advantage Better balance (e.g. more updating; less inference) Need to do this carefully… We still need inference at test time Need to control the algorithm such that it converges 5 Questions Can we guarantee the convergence of the algorithm? Can we control the cache such that it is not too large? Is the balanced approach better than the “coupled” one? 6 Contributions We propose a Dual Coordinate Descent (DCD) Algorithm For L2-Loss Structural SVM; Most people solve L1-Loss SSVM DCD decouples Inference and Update procedures Easy to implement; Enables “inference-less” learning Results Competitive to online learning algorithms; Guarantee to converge [Optimization] DCD algorithms are faster than cutting plane/ SGD Balance control makes the algorithm converges faster (in practice) Myth Structural SVM is slower than Perceptron 7 Outline Structured SVM Background Dual Formulations Dual Coordinate Descent Algorithm Hybrid-Style Algorithm Experiments Other possibilities 8 Structured Learning 9 The Perceptron Algorithm 10 Structural SVM Objective function Distance-Augmented Argmax 11 Dual formulation 12 Outline Structured SVM Background Dual Formu

文档评论(0)

chenchend + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档