用身高和体重数据进行性别分类的实验报告.doc

用身高和体重数据进行性别分类的实验报告.doc

  1. 1、本文档共18页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
用身高和体重数据进行性别分类的实验报告

用身高和体重数据进行性别分类的实验报告(二) 基本要求 1、试验非参数估计,体会与参数估计在适用情况、估计结果方面的异同。 2、试验直接设计线性分类器的方法,与基于概率密度估计的贝叶斯分类器进行比较。 3、体会留一法估计错误率的方法和结果。 二、具体做法 1、在第一次实验中,挑选一次用身高作为特征,并且先验概率分别为男生0.5,女生0.5的情况。改用Parzen窗法或者kn近邻法估计概率密度函数,得出贝叶斯分类器,对测试样本进行测试,比较与参数估计基础上得到的分类器和分类性能的差别。 2、同时采用身高和体重数据作为特征,用Fisher线性判别方法求分类器,将该分类器应用到训练和测试样本,考察训练和测试错误情况。将训练样本和求得的决策边界画到图上,同时把以往用Bayes方法求得的分类器也画到图上,比较结果的异同。 3、选择上述或以前实验的任意一种方法,用留一法在训练集上估计错误率,与在测试集上得到的错误率进行比较。 三、原理简述及程序框图 1、挑选身高(身高与体重)为特征,选择先验概率为男生0.5女生0.5的一组用Parzen窗法来求概率密度函数,再用贝叶斯分类器进行分类。 以身高为例 本次实验我们组选用的是正态函数窗,即,窗宽为(h是调节的参量,N是样本个数) ,(d表示维度)。因为区域是一维的,所以体积为。Parzen公式为。 故女生的条件概率密度为 男生的条件概率密度为 根据贝叶斯决策规则知 如果,否则,。 流程图如下: 2、要求是同时采用身高和体重数据作为特征,用Fisher线性判别方法求分类器,将该分类器应用到训练和测试样本,考察训练和测试错误情况。将训练样本和求得的决策边界画到图上,同时把以往用Bayes方法求得的分类器也画到图上,比较结果的异同。 说明,取男生和女生的先验概率分别为0.5,0.5。在设计贝叶斯分类器时,首先求各类样本均值向量,及,然后求各个样本的来内离散度矩阵,及,再求出样本的总类内离散度,及,根据公式求出把二维X空间投影到一维Y空间的最好的投影方向。再求出一维Y空间中各类样本均值,其中,本次实验的分界阈值我们用如下方法得到:,最后,将测试样本中的值代入,求出y,并将其与y0来进行比较来分类。 根据课本对Fisher线性判别法的介绍,得到的算法流程图如下: 3、选择上述或以前实验的任意一种方法,用留一法在训练集上估计错误率,与在测试集上得到的错误率进行比较。 这里我们选择Fisher线性判别法,用留一法来估计它在训练集上的错误率,并将结果与Fisher线性判别法对测试集进行判别时得到的错误率进行比较。 具体流程图如下: 四、实验结果及分析总结 1、得到结果如下表 以身高作为特征 h=4 估计方法 女生先验概率 男生先验概率 男生错误个数 女生错误个数 总错误 男生错误率 女生错误率 总错误率 Parzen窗法 0.25 0.75 22 8 30 16% 8.8% 10% 0.5 0.5 34 4 38 13.6% 8% 12.67% 0.75 0.25 80 2 82 32% 4% 27.33% 最大似然Bayes 0.25 0.75 20 6.667% 0.5 0.5 27 9% 0.75 0.25 60 20% 以身高与体重作为特征 h=7 估计方法 女生先验概率 男生先验概率 男生错误个数 女生错误个数 总错误 男生错误率 女生错误率 总错误率 Parzen窗法 0.25 0.75 7 22 29 14% 8.8% 9.67% 0.5 0.5 38 2 40 15.2% 4% 13.33% 0.75 0.25 2 46 48 18.4% 4% 16% 最大似然Bayes 0.25 0.75 8 6 14 3.2% 12% 4.67% 0.5 0.5 29 3 32 11.6% 6% 10.67% 0.75 0.2 59 1 60 23.6% 2% 20% 分析:通过比较可知,在用最大似然估计这种参数估计方法和Parzen这种非参数估计方法来进行分类时,最大似然估计判别的错误率低。 2、得到结果如下 (1)、用Fisher线性判别方法求分类器,将分类器应用到训练和测试样本上,比较其错误率 判别 对象 男生错误个数 女生错误个数 总错误 男生错误率 女生错误率 总错误率 测试样本 27 2 29 10.8% 4% 9.67% 训练样本 8 4 12 16% 8% 12% 分析:用训练样本得到的分类器测试测试样本时错误率低,测试结果较好,但测试训练样本时,

文档评论(0)

liudao + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档