11多重共线性.ppt

  1. 1、本文档共42页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
11多重共线性

§4.3 多重共线性 Multi-Collinearity 一、多重共线性的概念 二、实际经济问题中的多重共线性 三、多重共线性的后果 四、多重共线性的检验 五、克服多重共线性的方法 六、案例 *七、分部回归与多重共线性 一、多重共线性的概念 对于模型 Yi=?0+?1X1i+?2X2i+?+?kXki+?i i=1,2,…,n 其基本假设之一是解释变量是互相独立的。 如果存在 c1X1i+c2X2i+…+ckXki=0 i=1,2,…,n 其中: ci不全为0,则称为解释变量间存在完全共线性(perfect multicollinearity)。 在矩阵表示的线性回归模型 Y=X?+? 中,完全共线性指:秩(X)k+1,即 注意: 完全共线性的情况并不多见,一般出现的是在一定程度上的共线性,即近似共线性。 二、实际经济问题中的多重共线性 一般地,产生多重共线性的主要原因有以下三个方面: (1)经济变量相关的共同趋势 时间序列样本:经济繁荣时期,各基本经济变量(收入、消费、投资、价格)都趋于增长;衰退时期,又同时趋于下降。 横截面数据:生产函数中,资本投入与劳动力投入往往出现高度相关情况,大企业二者都大,小企业都小。 (2)滞后变量的引入 在经济计量模型中,往往需要引入滞后经济变量来反映真实的经济关系。 例如,消费=f(当期收入, 前期收入) 显然,两期收入间有较强的线性相关性。 (3)样本资料的限制 由于完全符合理论模型所要求的样本数据较难收集,特定样本可能存在某种程度的多重共线性。 一般经验: 时间序列数据样本:简单线性模型,往往存在多重共线性。 截面数据样本:问题不那么严重,但多重共线性仍然是存在的。 二、多重共线性的后果 2、近似共线性下OLS估计量非有效 近似共线性下,可以得到OLS参数估计量, 但参数估计量方差的表达式为 多重共线性使参数估计值的方差增大,1/(1-r2)为方差膨胀因子(Variance Inflation Factor, VIF) 3、参数估计量经济含义不合理 如果模型中两个解释变量具有线性相关性,例如 X2= ?X1 , 这时,X1和X2前的参数?1、?2并不反映各自与被解释变量之间的结构关系,而是反映它们对被解释变量的共同影响。 ?1、?2已经失去了应有的经济含义,于是经常表现出似乎反常的现象:例如?1本来应该是正的,结果恰是负的。 4、变量的显著性检验失去意义 5、模型的预测功能失效 变大的方差容易使区间预测的“区间”变大,使预测失去意义。 三、多重共线性的检验 多重共线性检验的任务是: (1)检验多重共线性是否存在; (2)估计多重共线性的范围,即判断哪些变量之间存在共线性。 1、检验多重共线性是否存在 (1)对两个解释变量的模型,采用简单相关系数法 求出X1与X2的简单相关系数r,若|r|接近1,则说明两变量存在较强的多重共线性。 2、判明存在多重共线性的范围 如果存在多重共线性,需进一步确定究竟由哪些变量引起。 (1) 判定系数检验法 使模型中每一个解释变量分别以其余解释变量为解释变量进行回归,并计算相应的拟合优度。 如果某一种回归 Xji=?1X1i+?2X2i+??LXLi 的判定系数较大,说明Xj与其他X间存在共线性。 具体可进一步对上述回归方程作F检验: 式中:Rj?2为第j个解释变量对其他解释变量的回归方程的决定系数, 若存在较强的共线性,则Rj?2较大且接近于1,这时(1- Rj?2 )较小,从而Fj的值较大。 因此,给定显著性水平?,计算F值,并与相应的临界值比较,来判定是否存在相关性。 在模型中排除某一个解释变量Xj,估计模型; 如果拟合优度与包含Xj时十分接近,则说明Xj与其它解释变量之间存在共线性。 (2)逐步回归法 以Y为被解释变量,逐个引入解释变量,构成回归模型,进行模型估计。

文档评论(0)

word.ppt文档 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档