BP神经网络详解与实例.pptVIP

  1. 1、本文档共85页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
人工神经网络 (Artificial Neural Netwroks -----ANN) -----HZAU 数模基地 引 言 利用机器模仿人类的智能是长期以来人们认识自然、改造自然和认识自身的理想。 研究ANN目的: (1)探索和模拟人的感觉、思维和行为的规律,设计具有人类智能的计算机系统。 (2)探讨人脑的智能活动,用物化了的智能来考察和研究人脑智能的物质过程及其规律。 ANN的研究内容 (1)理论研究:ANN模型及其学习算法,试图从数学上描述ANN的动力学过程,建立相应的ANN模型,在该模型的基础上,对于给定的学习样本,找出一种能以较快的速度和较高的精度调整神经元间互连权值,使系统达到稳定状态,满足学习要求的算法。 (2)实现技术的研究:探讨利用电子、光学、生物等技术实现神经计算机的途径。 (3)应用的研究:探讨如何应用ANN解决实际问题,如模式识别、故障检测、智能机器人等。 研究ANN方法 (1)生理结构的模拟: 用仿生学观点,探索人脑的生理结构,把对人脑的微观结构及其智能行为的研究结合起来即人工神经网络(Artificial Neural Netwroks,简称ANN)方法。 (2)宏观功能的模拟: 从人的思维活动和智能行为的心理学特性出发,利用计算机系统来对人脑智能进行宏观功能的模拟,即符号处理方法。 ANN研究的目的和意义 (1)通过揭示物理平面与认知平面之间的映射,了解它们相互联系和相互作用的机理,从而揭示思维的本质,探索智能的本源。 (2)争取构造出尽可能与人脑具有相似功能的计算机,即ANN计算机。 (3)研究仿照脑神经系统的人工神经网络,将在模式识别、组合优化和决策判断等方面取得传统计算机所难以达到的效果。 神经网络研究的发展 (1)第一次热潮(40-60年代未) 1943年,美国心理学家W.McCulloch和数学家W.Pitts在提出了一个简单的神经元模型,即MP模型。1958年,F.Rosenblatt等研制出了感知机(Perceptron)。 (2)低潮(70-80年代初): (3)第二次热潮 1982年,美国物理学家J.J.Hopfield提出Hopfield模型,它是一个互联的非线性动力学网络.他解决问题的方法是一种反复运算的动态过程,这是符号逻辑处理方法所不具备的性质. 1987年首届国际ANN大会在圣地亚哥召开,国际ANN联合会成立,创办了多种ANN国际刊物。1990年12月,北京召开首届学术会议。 人工神经网络研究的局限性 (1)ANN研究受到脑科学研究成果的限制。 (2)ANN缺少一个完整、成熟的理论体系。 (3)ANN研究带有浓厚的策略和经验色彩。 (4)ANN与传统技术的接口不成熟。 人工神经网络概述 什么是人工神经网络? T.Koholen的定义:“人工神经网络是由 具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。” 二、神经元与神经网络 大脑可视作为1000多亿神经元组成的神经网络 神经元的信息传递和处理是一种电化学活动.树突由于电化学作用接受外界的刺激;通过胞体内的活动体现为轴突电位,当轴突电位达到一定的值则形成神经脉冲或动作电位;再通过轴突末梢传递给其它的神经元.从控制论的观点来看;这一过程可以看作一个多输入单输出非线性系统的动态过程 脑神经信息活动的特征 (1)巨量并行性。 (2)信息处理和存储单元结合在一起。 (3)自组织自学习功能。 神经网络基本模型 神经元的数学模型 其中x=(x1,…xm)T 输入向量,y为输出,wi是权系数;输入与输出具有如下关系: 例如,若记 取激发函数为符号函数 或 注:若将阈值看作是一个权系数,-1是一个固定的输入,另有m-1个正常的输入,则(1)式也可表示为: 2、神经网络的数学模型 众多神经元之间组合形成神经网络,例如下图的含有中间层(隐层)的B-P网络 基本BP网络的拓扑结构 人工神经网络 (Artificial Neuron Nets=ANN) 例 问:如果抓到三只新的蚊子,它们的触角长和翼长分别为(l.24,1.80); (l.28,1.84);(1.40,2.04).问它们应分别属于哪一个种类? 思路:作一直线将两类飞蠓分开 分类结果:(1.24,1.80),(1.28,1.84)属于Af类;(1.40,2.04)属于 Apf类. ?缺陷:根据什么原则确定分类直线? 再如,如下的情形已经不能用分类直线的办法: 基本BP网络的拓扑结构 四、反向传播算法(B-P算法

文档评论(0)

118books + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档