CHAPTERNonparametricMethods.pptVIP

  1. 1、本文档共24页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
CHAPTERNonparametricMethods

Lecture Notes for E Alpayd?n 2004 Introduction to Machine Learning ? The MIT Press (V1.1) CHAPTER 8: Nonparametric Methods Alpaydin transparencies significantly modified, extended and changed by Ch. Eick Last updated: March 4, 2011 Eick/Alpaydin: Non-Parametric Density Estimation * Non-Parametric Density Estimation Goal is to obtain a density function: /wiki/Probability_density_function Parametric (single global model), semiparametric (small number of local models) Nonparametric: Similar inputs have similar outputs Keep the training data;“let the data speak for itself” Given x, find a small number of closest training instances and interpolate from these Aka lazy/memory-based/case-based/instance-based learning Histograms Histogram Usually shows the distribution of values of a single variable Divide the values into bins and show a bar plot of the number of objects in each bin. The height of each bar indicates the number of objects Shape of histogram depends on the number of bins Example: Petal Width (10 and 20 bins, respectively) Lecture Notes for E Alpayd?n 2004 Introduction to Machine Learning ? The MIT Press (V1.1) * Density Estimation Given the training set X={xt}t drawn iid from p(x) Divide data into bins of size h, stating from origin xo Histogram: Naive estimator: or Typo corrected on March 5 2011 Lecture Notes for E Alpayd?n 2004 Introduction to Machine Learning ? The MIT Press (V1.1) * Origin 0; h(1)=4/16 h(1.25)=1/8 Lecture Notes for E Alpayd?n 2004 Introduction to Machine Learning ? The MIT Press (V1.1) * h(2)=2/2*8=0.125 * Gaussian Kernel Estimator Kernel function, e.g., Gaussian kernel: Kernel estimator (Parzen windows): Gaussian Influence Functions in general: Influence of xt on x; h determines how quickly influence decreases as distance between xt and x increases; h is called “width” of kernel. Eick/Alpaydin: Non-Parametric Density Estimation Query point * Example: Kernel Density Estimation D={x1,x2,x3,x4} fDGaussian(x)= influ

文档评论(0)

118books + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档