- 1、本文档共15页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
ChMachineLearningGeneticAlgorithm
Genetic Algorithm (GA) GA view learning as a competition among a population of evolving candidate problem solutions. A “fitness” function evaluates each solution to decide whether it will contribute to the next generation of solutions Genetic Algorithm Genetic Algorithm Basic functions of Genetic Algorithm (GA) Crossover Mutation: takes a single candidate and randomly changes some aspect of it Inversion Genetic Algorithm Example: Traveling Salesperson problem The Traveling salesperson problem Suppose a salesperson has five cities to visit and then must return home The goal of the problem is to find the shortest path for the salesperson to travel Genetic Algorithm Traveling Salesperson Problem (TSP) is classic to AI and computer science It has been shown to be NP-hard problem TSP has some very nice applications, including Circuit board drilling X-ray crystallography Routing in VLSI fabrications Some of these applications required to travel tens of thousands points (cities) Genetic Algorithm How might we use genetic algorithm (GA) to solve traveling salesperson problem (TSP)? First of all, the choice of a representation for the path of cities visited in not trivial Give each city an numeric name The design of fitness function is much easier Genetic Algorithm Now, the problem is how to crossover? P1= (192465783) P2= (459187623) Genetic Algorithm First of all, select two cut point, indicate by a “|”, which are randomly inserted into the same location of each parent P1= (192 | 4657 | 83) P2= (459 | 1876 | 23) Genetic Algorithm Two children C1 and C2 are produced in the following way. First, the segments between cut points are copied into the offspring: C1= (XXX | 4657 | XX) C2= (XXX | 1876 | XX) Genetic Algorithm Next, starting from the second cut point of one parent, the cities from the other parent are copied in the same order, omitting cities already present When the end of the string is reached, continue on from the beginning Thus, the sequence of cit
文档评论(0)