- 1、本文档共50页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
DBSeminarSeriesHARPAHierarchicalAlgorithmwithAutomatic
* Our Approach: HARP More details: mutual disagreement Mutual disagreement prevention: Setup the md threshold to limit the maximum disagreement on the new set of attributes Get the statistics of the loss of information in all possible merges, discard those with extraordinary high loss Add a punishment factor to the similarity score * Our Approach: HARP.1 HARP.1: an implementation of HARP that defines the relevance of an attribute to a cluster by its density improvement from the global density Relevance score of an attribute to a cluster: Categorical: 1 – (1 – Mode-ratiolocal) / (1 – Mode-ratioglobal) Numeric: 1 – Varlocal / Varglobal *When Mode-ratioglobal = 1 or Varglobal = 0, the score = 0 If C1 and C2 merge into Cnew, we can use the records of C1 and C2 to evaluate their “agreement” on the selected attributes of Cnew in a similar way. * Our Approach: HARP.1 Mutual disagreement calculations: Den(Ci, a): how good is attribute a in Ci Den(Ci, Cnew, a): how good is the attribute a in Ci, evaluated by using the properties of a in Cnew Both values are in the range [0, 1] * Our Approach: HARP.1 Similarity score: * mapc dt md Threshold loosening 1 g mmd d 1 imd Our Approach: HARP.1 Multi-step clustering: Initial thresholds Cluster 1 Cluster2 Merge Score 2 6 27.6 3 8 24.3 12 13 24.1 1 5 18.5 … Merge score calculations Perform all possible merges 1 g mmd Baseline value for each dt variable: the global statistical value Initial and baseline values for the md variable: user parameters, default 10 and 50 With mutual disagreement prevention: MD(C1,C2) = md Sum of and difference between ILoss(C1,Cnew) and ILoss(C2,Cnew) not more than a certain s.d. from mean Punishment factor in similarity score Each cluster keeps a local score list (binary tree) containing merges with all other clusters. The best scores are propagated to a global score list mapc dt md d 1 imd * Our Approach: HARP.1 Time complexity: Speeding up: use a fast projected clustering algorithm to pre-cluster t
您可能关注的文档
最近下载
- 肾动态显像dynamicrenalimaging.PPT
- 人教版(2024新版)英语七年级上册Unit 7 Happy Birthday!大单元整体教学设计.docx
- 《高等职业学校专业教学标准(试行)》存在的问题及改进建议--以财经大类、文化教育大类和旅游大类为例.pdf VIP
- 《小班美工区中幼儿教师指导问题及策略研究报告》9700字.docx
- 三级烟草专卖管理师岗位技能鉴定试卷答案.docx VIP
- 国家开放大学,地域文化,人文武隆形考一 (2).docx
- 2024年秋季新北师大版七年级上册数学全册教案.DOCX
- 手术讲解模板:睾丸扭转复位固定术.ppt
- 壹号土猪市场营销分析.doc VIP
- DELI得力 M201CR用户手册 说明书.pdf
文档评论(0)