DistributionalClusteringofEnglishWords.pptVIP

  1. 1、本文档共24页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
DistributionalClusteringofEnglishWords

Distributional Clustering of English Words Fernando Pereira- ATT Bell Laboratories, 600 Naftali Tishby- Dept. of Computer Science, Hebrew University Lillian Lee- Dept. of Computer Science, Cornell University Presenter- Juan Ramos, Dept. of Computer Science, Rutgers Universtiy, juramos@cs.rutgers.edu Overview Purpose: evaluate a method for clustering words according to their distribution in particular syntactic contexts. Methodology: find lowest distortion sets of clusters of words to determine models of word coocurrence. Applications Scientific POV: lexical acquisition of words Practical POV: classification concerns data sparseness in garmmar models. Address clusters in large corpus of documents Definitions Context: function of given word in its sentence. Eg: a noun as a direct object Sense class: hidden model describing word association tendencies Mix of cluster and cluster probability given a word Cluster: probabilistic concept of a sense class Problem Setting Restrict problem to verbs (V) and nouns (N) in main verb-direct object relationship f (v, n) = frequencies of occurrence of verb, noun pairs Text must be pre-formatted to fit specifications For given noun n, conditional distribution p(n, v) = f(v,n)/(sum (v, f(v,n)) Problem Setting cont. Goal: create set C of clusters and probabilityies p(c|n). Each c in C associated to cluster centroid p(c) p(c) = average of p(n) over all v in V. Distributional Similarity Given two distributions p, q, KL distance is D(p || q) = sum (x, p(x) log (p(x)/q(x))) D(p || q) = 0 implies p = q Small D(p || q) implies two distributions are likely instances of a centroid p(c). D(p || q) measures loss of data by using p(c). Theoretical Foundation Given unstructured V, N, training data of X independent pairs of verbs and nouns. Problem: learn joint distribution of pairs given X Not quite unsupervised, not quite supervised No internal structure in pairs Learn underlying distribution Distributional Clustering Approximately decompose p(n

文档评论(0)

118books + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档