HistoryoftheQuadraticEquationSketch.pptVIP

  1. 1、本文档共18页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
HistoryoftheQuadraticEquationSketch

History of the Quadratic Equation Sketch 10 By: Stephanie Lawrence Jamie Storm Introduction Around 2000 BC Egyptian, Chinese, and Babylonian engineers acquired a problem. When given a specific area, they were unable to calculate the length of the sides of certain shapes. Without these lengths, they were unable to design a floor plan for their customers. Preview Egyptian way of finding area Babylonian and Chinese method Pythagoras’ and Euclid’s contribution Brahmagupta’s Contribution Al-Khwarzimi’s Contribution Egyptian’s Contribution Their Problem Babylonian and Chinese Contribution Started a method known as completing the square and used it to solve basic problems involving area. Babylonians had the base 60 system while the Chinese used an abacus. These systems enabled them to double check their results. Pythagoras’ and Euclid’s Contribution In search of a more general method Brahmagupta’s Contribution Indian/Hindu mathematician Gives an almost modern solution of the quadratic equation, allowing negatives Brahmagupta’s formula: s=a+b+c+d 2 s=semiperimeter Al-Khwarizmi’s Contribution An Arab Mathematician Al-Khwarizmi’s Contribution Gave a classification of the different types of quadratics which include: The Discussion Ex: One square and ten roots of the same are equal to thirty-nine dirhems. (i.e. What must be the square that when increased by ten of its own roots, amounts to thirty-nine?) Can you Show this Geometrically? We draw a square with side x and add a 10 by x rectangle. Back to The Discussion X is the unknown; the problem translates to x2+10x=39 Try One One square and 6 roots of the same are equal to 135 dirhems. (i.e. What must be the square which, when increased by 6 of its own roots amounts to 135?) Extra Information Methods and justifications became more sophisticated over time From the 9th Century to the 16th Century, almost all algebra books started their discussions of quadratic equations with Al-Khwarizmi’s example In

文档评论(0)

118books + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档