- 1、本文档共59页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
一元回归
应用统计第1章 第11章 一元回归 本章教学目标: 了解回归分析在经济与管理中的广泛应用; 掌握回归分析的基本概念、基本原理及其分析应用的基本步骤; 熟练掌握使用软件求解回归方程及其运行输出结果的分析与使用; 能应用回归分析方法解决实际问题(分析各种变量间的关系,进行预测和控制) 本章主要内容: §11.1 回归分析概述 §11.2 一元线性回归 §11.3 质量控制应用案例分析 §11.4 残差分析 §11.5 曲线回归 本章内容重点: 最小二乘法的原理;回归方程和回归系数的显著性检验;软件的求解分析。 §11.1 回归分析概述 在经济管理和其他领域中,人们经常需要研究两个或多个变量(现象)之间的相互(因果)关系,并使用数学模型来加以描述和解释。如: 商品销售量与价格间的关系; 产品的某些质量指标与某些控制因素之间的关系; 家庭消费支出与家庭收入间的关系等等。 回归分析就是对变量间存在的不确定关系进行分析的统计方法。 回归分析是使用得最为广泛的统计学分支,在质量管理、市场营销、宏观经济管理等领域都有非常广泛的应用。 质量控制应用案例 某钢厂生产的某种合金钢有两个重要的质量指标:抗拉强度(kg/mm2)和延伸率(%)。 该合金钢的质量标准要求:抗拉强度应大于32kg/mm2;延伸率应大于33%。 根据冶金学的专业知识和实践经验,该合金钢的含碳量是影响抗拉强度和延伸率的主要因素。其中含碳量高,则抗拉强度也就会相应提高,但与此同时延伸率则会降低。 为降低生产成本,提高产品质量和竞争能力,该厂质量控制部门要求该种合金钢产品的上述两项质量指标的合格率都应达到99%以上。 为达到以上质量控制要求,就需要制定该合金钢冶炼中含碳量的工艺控制标准,也即要确定在冶炼中应将含碳量控制在什么范围内,可以有99%的把握使抗拉强度和延伸率这两项指标都达到要求。 这是一个典型的产品质量控制问题,可以使用回归分析方法求解。 1. 确定性关系 ——也即函数关系,即 Y = f(X) ; Y = ?(X1, X2, ···, Xp) 或 F(X, Y) = 0; F(X1, X2, ···, Xp, Y) = 0 例:价格不变时商品销售收入与销售量的关系。 以三口之家为单位,某种食品在某年各月的家庭平均月消费量 Y (kg)与其价格 X (元/kg) 间的调查数据如下,试分析该食品家庭平均月消费量与价格间的关系。 由图可知,该食品家庭月平均消费量 Y 与价格 X 间基本呈线性关系。这些点与直线 Y = ?0 + ?1X 间的偏差是由其他一些无法控制的因素和观察误差引起的。 因此可以建立 Y 与 X 之间关系的如下线性回归模型 Y = ?0 + ?1X + ? (11.1-1) 其中 X —— 解释变量(自变量) Y —— 被解释变量(因变量) ?0, ?1 —— 模型中的未知参数 ? —— 随机误差项 随机误差项产生的原因 (1) 模型中忽略的其他因素对 Y 的影响; (2) 模型不准确所产生的偏差; (3) 模型中包含了对 Y 无显著影响的变量; (4) 对变量的观察误差; (5) 其他随机因素的影响。 线性回归模型的数据结构 yi = ?0 + ?1xi + ?i ; i =1, 2, ···, N (11.1-2) 其中 ?i 是其他因素和试验误差对 yi 影响的总和。 例 解释截距和斜率一名统计学教授打算运用学生为准备期末考试而学习统计学的小时数(X)预测其期末考试成绩(Y)。依据上学期上课班级中收集的数据建立的回归模型如下: 如何解释截距和斜率? 解 截距=35.0表示当学生不为期末考试做准备的话,期末考试平均成绩是35.0。斜率=3表示每增加1小时学习时间,期末考试平均成绩就变化+3.0。换句话说,每增加1小时学习时间,期末成绩就增加3.0。 1. 各 ?i ~ N( 0,? 2 ),且相互独立; 2. 解释变量是可以精确观察的普通变量(非随机变量); 3. 解释变量与随机误差项是各自独立对被解释变
您可能关注的文档
最近下载
- 济南版(2024)初中生物学七年级上册《脊椎动物身体背部有脊柱》教学设计及反思.docx
- 中铁建工集团质量管理手册.pdf
- 二级中医医院评审细则解读院感部分.pptx
- 2024年迪瑞医疗分析报告:强化协同,仪器放量布局市场.pdf
- 部编版初中道德与法治九年级上册单元作业设计 (优质案例12页) .pdf
- 广东实验中学2023-2024学年八年级上学期期中考试语文试卷.docx VIP
- 2020年世界发展报告:全球价值链时代的贸易换发展.pdf VIP
- 湖北省水利工程重大设计变更报告编制大纲.pdf
- 2024高中地理教师课程标准考试模拟试卷及参考答案.docx VIP
- 《材料成型工艺学》全套教学课件.ppt
文档评论(0)