浅析弥散强化铜的电极产业化前景.docVIP

浅析弥散强化铜的电极产业化前景.doc

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
浅析弥散强化铜的电极产业化前景

浅析弥散强化铜的电极产业化前景   弥散强化铜基复合材料,是通过在铜基体中加入氧化物颗粒作为增强相,并均匀弥散的分布在铜基体中,既保持了材料的导电性,又达到了提高铜基复合材料的力学性能及高温抗软化能力的目的。铜- 氧化铝复合材料不仅室温强度高、导电和导热性能优良,而且具有良好的耐磨性及高温稳定性,是一种有着广阔前景的复合材料。目前,应用最广的氧化物弥散相是Al2O3。Al2O3 弥散强化铜基复合材料不仅具有高的导电、导热性能,而且具有优越的高温性能和抗蚀性能,在电阻焊电极行业有着极大的优势和广阔的前景,是现代电子信息、能源产业发展的关键材料,已成为当前材料行业研究的热点。   弥散强化机制主要有位错绕过机制和位错切割机制。强化机理是: 在弥散强化材料中,弥散相阻碍位错线的运动,位错线需要较大的应力才能克服阻碍而向前移动,由此材料强度得以提高。对比其它几种强化方式如固溶强化、形变强化等,当温度升高时,材料随着温度升高而出现再结晶或者沉淀重溶的现象,强化机制赖以生存的微观结构变得不稳定,强化作用逐渐失去,合金的高温热稳定性无法满足使用要求。与之相比弥散强化的优势在高温下则表现得十分的突出,具有理想的高温热稳定性。   氧化物陶瓷具有强度高、熔点高、热力学稳定性良好等优点,作为第二增强相,在接近于铜基体熔点的条件下也不会溶解或粗化,既保持了合金的导电性能,又有效地提高了合金的室温和高温强度,从而使材料具备良好的综合性能。细小、均匀弥散分布于铜基体中的氧化铝颗粒,由于在高温下仍然具有优良的尺寸和化学稳定性,具有很强的钉扎作用,从而阻止基体组织的粗化,所以Al2O3 弥散强化铜复合材料在高温下仍能保持大部分硬度。而且由于Al2O3 颗粒在铜基体中体积分数小,而且呈细小弥散分布状态,保持了铜基体高导电高导热性能,使材料在接近铜熔点的温度下也能工作。   在电阻焊电极材料行业,现大量使用的电极材料铬锆铜( Cu - Cr -Zr 系列) ,由于软化温度较低,大约在500℃左右,电极损耗严重导致焊接成本大幅提高,由于频繁地更换,也严重影响了焊接设备的效率。而弥散强化铜合金制成的点焊电极具有寿命长( 普通铬锆铜的4 ~ 10倍) 、抗软化、不粘附的特性,显示出超强的焊接性能优势。在焊接的过程中弥散强化铜基复合材料可以做到电流的快速传导,焊区热量能迅速消散,在高温、高压、高电流的工作环境下有非常好的使用效果。在汽车行业,焊接镀锌的钢板时,在氧化铝强化铜电极顶部工作面形成的氧化铝保护层,能有效防止电极表面层在焊接低碳钢板过程中与钢板粘接,很大程度上减轻电极损耗,提高电极使用寿命。随着机械制造业尤其是汽车工业的飞速发展,对氧化铝弥散强化铜合金的需求量正在日益增加,将会产生良好的社会效益和经济效益。   当前Al2O3 铜基复合材料产业化面临的主要问题:   1 Al2O3 铜基复合材料工艺问题   传统的弥散铜的制造技术多采用粉末冶金法,最开始以外加Al2O3 颗粒混合均匀,压制成型后进行烧结,制成烧结体。粉末冶金法生产Al2O3 弥散强化铜工艺成熟,生产出的复合材料性能较好,但生产工艺复杂、成本高、生产效率低,同时复合材料界面易受污染。改进后的制造工艺通过内氧化原位生成纳米级Al2O3 颗粒,细小且在基体分布均匀,有较高的热力学稳定性; 但是其高温性能不佳,同时流程复杂,造成材料质量控制困难,成本非常高,极大地限制了其推广应用。球磨法通常是将纳米或者微米级的Al2O3 粉与Cu 粉按比例放于球磨机中球磨,在球磨过程中Al2O3 颗粒嵌入Cu 颗粒中形成弥散强化铜合金粉。该方法的优点在于简单易操作,而且Al2O3 的含量可以在较大范围内调控。其缺点在于氧化铝颗粒在Cu 颗粒中的分布状态不够均匀,界面结合也不够紧密,采用该方法制得的氧化铝弥散强化铜的导电性及强度通常都较差。   综其所述,Al2O3 复合材料产业化当前面临的困难一是工艺复杂,二是成本过高,无法满足市场的要求。今后的研究工作应向工艺简化,工艺参数控制,生产成本降低方向发展,从而实现Al2O3 弥散强化铜基复合材料。   2 Al2O3 铜基复合材料致密度问题   Al2O3 弥散强化铜基复合材料的性能好坏,致密度是一个很重要的工艺参数。传统的生产方法制备出的弥散强化铜基复合材料烧结坯普遍致密度不高,特别是断面大时,无法进一步实现大的变形比,一般只能达到97. 5%左右理论密度,制品内部会有一定量的孔隙存在,使得最终产品的机械、物理性能不佳。因此,在烧结过程中提高致密度是Al2O3 弥散强化铜基复合材料研制过程中的一个技术难点。   通过采用真空感应热压炉或低压等静压烧结炉进行烧结,最大限度的消除合金内

文档评论(0)

专注于电脑软件的下载与安装,各种疑难问题的解决,office办公软件的咨询,文档格式转换,音视频下载等等,欢迎各位咨询!

1亿VIP精品文档

相关文档