浅论基于支持向量机的驾驶员超车意图识别.docVIP

浅论基于支持向量机的驾驶员超车意图识别.doc

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
浅论基于支持向量机的驾驶员超车意图识别

浅论基于支持向量机的驾驶员超车意图识别   随着各种车载电子设备、导航设备、手机和其他远程信息处理设备的日益普及,这些设备分散着驾驶员的注意力,使驾驶过程中的危险性增加,为此,人们正致力于发展半自动或全自动化的驾驶辅助系统,如使用驾驶员辅助系统(ADAS)的车道偏离警告(LDW)和车道变换辅助(LCA).但在未知驾驶员驾驶意图的情况下,这些辅助系统容易出现错误,如误报警等.所以系统在感知驾驶员驾驶行为的同时,对驾驶员的驾驶意图进行正确的识别是ADAS发展关键技术之一.   目前,很多研究者以转向灯的信号来判断驾驶员的超车意图,但只有64%的人在超车时会使用转向灯,且大都是在超车开始时才打开转向灯,而不是在初始阶段.其他的一些研究者也对驾驶员换道意图做了研究,如Jr等采集分析了自车车头与前车距离、加速踏板开度、制动踏板开度和方向盘转角等信息,提出了基于ACT-R认知理论的驾驶人换道意图模型;肖献强以驾驶意图的产生到执行的时间差,提出了基于驾驶人操作特性的辨识方法;孙纯基于实车实路环境下的实验,提出了基于Logistic思想和证据理论的驾驶人换道超车意图辨识方法.上述方法将注意力主要集中在对车辆状态参数的研究上,对车辆状态参数,道路参数和驾驶人行为进行综合性研究较少,存在前瞻性不够且识别率较低的问题.   本文提出了一种基于支持向量机(SupportVectorMachine,SVM)的超车意图辨识方法,对比分析了不同参数组合下模型的分类效果.最终确定了以方向盘转角,自车速度,车辆与道路边界距离和驾驶人眼动信息构成的人-车-路综合信息组合可获得最优辨识效果.   1支持向量机   支持向量机的主要目标就是将线性不可分的数据样本,通过核函数映射到高维数据空间,然后在高维空间进行分类,并构建一个超平面,使不同样本类型间的隔离边缘最大化.给定训练集为((x1,y1),…,(xn,yn)),其中:xiisin;T,T为样本特征参数构成的特征向量集合;yiisin;L,L为样本类别标签集;n为样本的数量.导入训练样本完成训练后,就能建立超平面WTx+b=0,其中x为输入向量,W为超平面法向量,b为偏置项.   SVM决策函数为   f(x)=sgn[sum;ni=1a*iyiK(xi·x)+b](1)   通过二次优化,得a*i,优化方程为   maxsum;ni=1ai=12sum;ni=1sum;nj=1aiajyiyjK(xi,xj)(2)   sum;ni=1aiyi=0,0le;aile;C,iisin;[1,n](3)   式中:C为选用值惩罚参数;K(xi,xj)为核函数,常用核函数有多项式核函数、sigmoid核函数、RBF核函数等.   2驾驶人换道意图分析   2.1特征参数的选取   在日常驾驶过程中,驾驶员的驾驶意图会受到由道路环境、自车情况和驾驶员本身组成的人-车-路系统内信息的影响,包括自车与前车距离、自车与道路边界的距离等道路环境信息;自车速度、加速踏板开度、方向盘转角等自车信息;以及驾驶员自身的一些信息,它们都可以作为判断驾驶员超车意图的特征参数.但是,选取太多的特征参数会增大SVM模型训练难度、降低模型的预测精度.   正常情况下,驾驶员要进行超车行驶,就必须转动方向盘.本文对比了在车道保持阶段和超车行驶阶段方向盘转角的标准差值,得到在车道保持、向左换道和向右换道阶段方向盘转角标准差分别为1.92deg;、7.38deg;和6.91deg;.不难发现,在进行超车换道过程中,方向盘转角变化非常明显;驾驶员驾车行驶过程中,如果前车速度过慢,驾驶员通常会采取超车行为,通过对比车道保持阶段和超车行驶阶段自车车速值,在进行超车行驶时,自车车速通常会超过车道保持阶段车速值的10%~16%.   道路环境参数中,车辆与道路左右边界的距离能够准确地反映汽车行驶方向的变化和其运动轨迹的趋势,所以该参数能够很好地反映驾驶员的超车意图.   驾驶员在超车前必先通过视觉扫描获取周围的环境信息,且扫描的对象除前方外,还有左右后视镜,在此过程中,驾驶员视觉特征主是眼球的转动,基于现有技术,利用眼动仪可以精确地测量出眼球部分的变动,同时在时序前瞻性方面,眼部运动信息有明显的优势.   本文选取方向盘转角、自车速度、车辆与道路边界距离和驾驶员眼动信息作为特征参数.采用不同的参数组合,并对各种组合的辨识效果进行对比分析,以获得最佳的参数组合,本文共设计了3组特征参数的组合.其中D1仅包含自车动态参数;D2含自车动态参数和道路环境参数,D3包含了人-车-路三者信息.   2.2构建特征向量   为了完成SVM分类器模型的构建,实现分类器的训练和检验,本文构建模型训

您可能关注的文档

文档评论(0)

专注于电脑软件的下载与安装,各种疑难问题的解决,office办公软件的咨询,文档格式转换,音视频下载等等,欢迎各位咨询!

1亿VIP精品文档

相关文档