- 1、本文档共7页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于meanshift的目标跟踪算法完整版
基于Mean Shift的
目标跟踪算法研究
指导教师:
摘要:该文把Itti视觉注意力模型融入到Mean Shift跟踪方法,提出了一种基于视觉显著图的Mean Shift跟踪方法。首先利用Itti视觉注意力模型,提取多种特征,得到显著图,在此基础上建立目标模型的直方图,然后运用Mean Shift方法进行跟踪。实验证明,该方法可适用于复杂背景目标的跟踪,跟踪结果稳定。
关键词:显著图 目标跟踪 Mean Shift
Mean Shift Tracking Based on Saliency Map
Abstract:In this paper, an improved Mean Shift tracking algorithm based on saliency map is proposed. Firstly, Itti visual attention model is used to extract multiple features, then to generate a saliency map,The histogram of the target based on the saliency map, can have a better description of objectives, and then use Mean Shift algorithm to tracking. Experimental results show that improved Mean Shift algorithm is able to be applied in complex background to tracking target and tracking results are stability.
1 引言
Mean Shift方法采用核概率密度来描述目标的特征,然后利用Mean Shift搜寻目标位置。这种方法具有很高的稳定行,能够适应目标的形状、大小的连续变化,而且计算速度很快,抗干扰能力强,能够保证系统的实时性和稳定性[1]。近年来在目标跟踪领域得到了广泛应用[2-3]。但是,核函数直方图对目标特征的描述比较弱,在目标周围存在与目标颜色分布相似的物体时,跟踪算法容易跟丢目标。目前对目标特征描述的改进只限于选择单一的特征,如文献[4]通过选择跟踪区域中表示目标主要特征的Harris点建立目标模型;文献[5]将初始帧的目标模型和前一帧的模型即两者的直方图分布都考虑进来,建立混合模型;文献[6]提出了以代表图像的梯度方向信息的方向直方图为目标模型;文献[7-8]提出二阶直方图,是对颜色直方图一种改进,是以颜色直方图为基础,颜色直方图只包含了颜色分布信息,二阶直方图在包含颜色信息的前提下包含了像素的均值向量和协方差。文献[9]提出目标中心加权距离,为离目标中心近的点赋予较大的权值,离目标中心远的点赋予较小的权值。文献[4-9]都是关注于目标和目标的某一种特征。但是使用单一特征的目标模型不能适应光线及背景的变化,而且当有遮挡和相似物体靠近时,容易丢失目标;若只是考虑改进目标模型,不考虑减弱背景的干扰,得到的效果毕竟是有限的。
针对上述问题,文本结合Itti 提出的视觉注意模型[5],将自底向上的视觉注意机制引入到Mean Shift跟踪中,提出了基于视觉显著图的Mean Shift跟踪方法。此方法在显著图基础上建立目标模型,由此得到的目标模型是用多种特征来描述的,同时可以降低背景对目标的干扰。
2 基于视觉显著图的Mean Shift跟踪方法
对人类视觉系统(human visual system,HVS)研究发现,图像的主要信息只集中在少数的关键区域中,正确地提取这些关键区域,可以大大提高图像分析和处理的效率和准确度,降低计算的复杂度,避免不必要的计算资源浪费。
在现存的众多视觉模型中,本文选取最具代表性的Itti视觉模型,它在特征提取阶段,采用多个低层视觉特征,如颜色、亮度、方向等;这些特征通过高斯金字塔和Center-Surround算子形成各个特征的关注图;然后将这些特征合成一幅显著图;再在显著图上,利用Mean Shift进行迭代有哪些信誉好的足球投注网站。整个算法流程如图1所示。
图1 基于视觉显著图的Mean Shift跟踪过程
2.1 视觉显著图的概念
所谓的显著图[6],就是一幅和原始图像大小相同的二维“图像”,其中的每个象素值表示原图像对应点的显著性大小。
2.2 获取视觉显著图[7-9]
Itti显著图原理是:(1)提取亮度、颜色和方向特征;(2)用高斯滤波器(5×5)对亮度、颜色和方向特征图像进行滤波,得到9层的高斯金字塔(其中第0层是原尺度图像,1到8层分别是为原尺度图像的1 /2 ~ 1 /25
您可能关注的文档
- 单元幕墙安装施工工艺.doc
- 单元测试实践实验报告.doc
- 单元设计-第十一章逻辑代数与门电路3.doc
- 单元测试1集合及简易逻辑连接词.doc
- 单向选择题.doc
- 单源最短路径贪心算法.docx
- 单转子流量计.doc
- 单选公共政策.doc
- 华能南通电2013厂脱硫高级工理论复习题(答案).doc
- 南京2003旅游客运招投标.doc
- 2025年广西中考地理二轮复习:专题四+人地协调观+课件.pptx
- 2025年广西中考地理二轮复习:专题三+综合思维+课件.pptx
- 2025年中考地理一轮教材梳理:第4讲+天气与气候.pptx
- 第5讲+世界的居民课件+2025年中考地理一轮教材梳理(商务星球版).pptx
- 冀教版一年级上册数学精品教学课件 第1单元 熟悉的数与加减法 1.1.6 认识1-9 第6课时 合与分.ppt
- 2025年中考一轮道德与法治复习课件:坚持宪法至上.pptx
- 2025年河北省中考一轮道德与法治复习课件:崇尚法治精神.pptx
- 八年级下册第二单元+理解权利义务+课件-2025年吉林省中考道德与法治一轮复习.pptx
- 精品解析:湖南省娄底市2019-2020学年八年级(上)期中考试物理试题(原卷版).doc
- 2025年中考地理一轮教材梳理:第10讲+中国的疆域与人口.pptx
文档评论(0)