2008_IJCV_LabelMe%3AADatabaseandWeb-BasedToolforImageAnnotation英文书.pdf

2008_IJCV_LabelMe%3AADatabaseandWeb-BasedToolforImageAnnotation英文书.pdf

  1. 1、本文档共17页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Int J Comput Vis (2008) 77: 157–173 DOI 10.1007/s11263-007-0090-8 LabelMe: A Database and Web-Based Tool for Image Annotation Bryan C. Russell · Antonio Torralba · Kevin P. Murphy · William T. Freeman Received: 6 September 2005 / Accepted: 11 September 2007 / Published online: 31 October 2007 ? Springer Science+Business Media, LLC 2007 Abstract We seek to build a large collection of images with ground truth labels to be used for object detection and recognition research. Such data is useful for supervised learning and quantitative evaluation. To achieve this, we developed a web-based tool that allows easy image annotation and instant sharing of such annotations. Using this annotation tool, we have collected a large dataset that spans many object categories, often containing multiple instances over a wide variety of images. We quantify the contents of the dataset and compare against existing state of the art datasets used for object recognition and detection. Also, we show how to extend the dataset to automatically enhance object labels with WordNet, discover object parts, recover a depth ordering of objects in a scene, and increase the number of labels using minimal user supervision and images from the web. Keywords Database · Annotation tool · Object recognition · Object detection The ?rst two authors (B.C. Russell and A. Torralba) contributed equally to this work. B.C. Russell ( ) · A. Torralba · W.T. Freeman Computer Science and Arti?cial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA e-mail: brussell@ A. Torralba e-mail: torralba@ W.T. Freeman e-mail: billf@ K.P. Murphy Departments of computer science and statistics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada e-mail: murphyk@cs.ubc.ca 1 Introduction Thousands of objects occupy the visual world in which we live. Biederman (1987) estimates that humans can recognize about 30 000 entry-level object categories. Recent work in computer vision has shown impre

文档评论(0)

新起点 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档