- 1、本文档共4页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
论文翻译,传感器融合的汽车应用
Sensor Fusion for Automobile Applications
Personnel:
Y. Fang, (I. Masaki, B.K.P.Horn)
Sponsorship:
Intelligent Transportation Research Center at MIT’s MTL
Introduction
To increase the safety and efficiency for transportation systems, many automobile applications need to detect detail obstacle information. Highway environment interpretation is important in intelligent transportation systems (ITS). It is expect to provide 3D segmentation information for the current road situation, i.e., the X, Y position of objects in images, and the distance Z information. The needs of dynamic scene processing in real time bring high requirements on sensors in intelligent transportation systems. In complicated driving environment, typically a single sensor is not enough to meet all these high requirements because of limitations in reliability, weather and ambient lighting. Radar provides high distance resolution while it is limited in horizontal resolution. Binocular vision system can provide better horizontal resolution, while the miscorrespondence problem makes it hard to detect accurate and robust Z distance information. Furthermore, video cameras could not behave well in bad weather. Instead of developing specialized image radar to meet the high ITS requirements, sensor fusion system is composed of several low cost, low performance sensors, i.e., radar and stereo cameras, which can take advantage of the benefit of both sensors.
Typical 2D segmentation algorithms for vision systems are challenged by noisy static background and the variation of object positions and object size, which leads to false segmentation or segmentation errors. Typical tracking algorithms cannot help to remove the errors of initial static segmentation since there are significant changes between successive video frames. In order to provide accurate 3D segmentation information, we should not simply associate distance information for radar and 2D segmentation information from video camera. It is ex
您可能关注的文档
- 精馏塔课程设计.doc
- 经济型轿车浮钳式制动器制动钳体三维建模及强度计算.doc
- 双向单车道四级公路施工组织设计文字说明.doc
- 精品课堂录播教室设计方案.doc
- 双金属复合垂头铸造工艺及充型模拟模拟.doc
- 基于51单片机的密码锁设计.doc
- 水产动物绿色健康养殖及疾病防治用药手册.doc
- 井下防暴勘察车传动系结构设计说明书.doc
- 水轮机导水控止装置结构设计方案及加工工艺.doc
- 酒店餐饮部岗位职责及操作流程.doc
- 六年级数学下册教学课件《解比例》.pptx
- 8.21.5 鸟类的生殖与发育(课件)八年级生物下册课件(苏教版).pptx
- 钠离子电池项目智能制造方案(范文参考).docx
- 2023-2024学年吉林省吉林市舒兰市七年级(上)期末语文试卷.docx
- 2024年吉林省吉林市丰满区亚桥实验学校中考数学三模试卷.docx
- 2023-2024学年吉林省辽源市东辽县七年级(上)期末英语试卷.docx
- 2023-2024学年吉林四平九年级数学第一学期期末水平检测试卷.docx
- 2023-2024学年吉林市蛟河市三校联考九年级(上)期末英语试卷.docx
- 2023-2024学年吉林松原九年级英语上册考场实战试卷.docx
- 电解液新材料项目智能制造方案.docx
文档评论(0)