第七章样本的主成分应用例子.pptVIP

  1. 1、本文档共19页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
第七章样本的主成分应用例子

第七章 §7.2样本的主成分 应用例子7.2.1 第七章 §7.2样本的主成分 例7.2.1的输出结果 第七章 §7.2样本的主成分 例7.2.1的输出结果 第七章 §7.2样本的主成分 例7.2.1的结果分析 第七章 §7.2样本的主成分 例7.2.1的结果分析 第七章 §7.2样本的主成分 例7.2.1的结果分析 第七章 §7.2样本的主成分 例7.2.1的结果分析 第七章 §7.2样本的主成分 例7.2.1的输出结果 第七章 §7.2样本的主成分 例7.2.1的结果分析 第七章 §7.2样本的主成分 例7.2.1的输出结果 第七章 §7.2样本的主成分 例7.2.1的结果分析 第七章§7.3主成分分析的应用 第七章§7.3主成分分析的应用 指标(变量)分类 第七章§7.3主成分分析的应用 指标(变量)分类---例子7.3.1 第七章§7.3主成分分析的应用 指标(变量)分类---例子7.3.1 第七章§7.3 主成分分析的应用 指标(变量)分类---例子7.3.1的输出结果 第七章§7.3 主成分分析的应用 指标(变量)分类---例子7.3.1的输出结果 第七章§7.3 主成分分析的应用 指标(变量)分类---例子7.3.1的结果分析 第七章§7.3 主成分分析的应用 指标(变量)分类---例子7.3.1的结果分析 * 北大数学学院  例7.2.1 学生身体各指标的主成分分析. 随机抽取30名某年级中学生,测量其身高(X1)、体重(X2)、胸围(X3)和坐高(X4),数据见书中P277表7.4(或以下SAS程序的数据行). 试对中学生身体指标数据做主成分分析. 解 (1) 以下SAS程序首先生成包括30名学生身体指标数据的SAS数据集d721(其中变量NUMBER记录识别学生的序号),然后调用SAS/STA软件中的PRINCOMP过程进行主成分分析.  学生身体指标数据的描述统计量和相关阵  输出7.2.1 相关阵的特征值和特征向量  PRINCOMP过程由相关阵出发进行主成分分析.由输出7.2.1中相关阵的特征值可以看出,第一主成分的贡献率已高达88.53%;且前二个主成分的累计贡献率已达96.36%.因此只须用两个主成分就能很好地概括这组数据. 另由第三和四个特征值近似为0,可以得出这4个标准化后的身体指标变量(Xi*,i=1,2,3,4)有近似的线性关系(即所谓共线性),如 0.505747 X1* -0.690844 X2* +0.461488 X3* -0.232343 X4*≈c(常数).  由最大的两个特征值对应的特征向量可以写出第一和第二主成分: Z1=0.4970 X1*+0.5146 X2* +0.4809 X3* +0.5069 X4* Z2= -0.5432 X1* +0.2102 X2* +0.7246 X3* - 0.3683 X4* 第一和第二主成分都是标准化后变量Xi* (i=1,2,3,4)的线性组合,且组合系数就是特征向量的分量.  利用特征向量各分量的值可以对各主成分进行解释. 第一大特征值对应的第一个特征向量的各个分量值均在0.5附近,且都是正值,它反映学生身材的魁梧程度.身体高大的学生,他的4个部位的尺寸都比较大;而身体矮小的学生,他的4个部位的尺寸都比较小.因此我们称第一主成分为大小因子.  第二大特征值对应的特征向量中第一(即身高X1的系数)和第四个分量(即坐高X4的系数)为负值,而第二(即体重X2的系数)和第三个分量(即胸围X3的系数)为正值,它反映学生的胖瘦情况,故称第二主成分为胖瘦因子.  输出7.2.2 第二主成分得分对第一主成分得分的散布图  输出7.2.2是PLOT过程产生的输出图形,从图中可以直观地看出,按学生的身体指标尺寸,这30名学生大约应分成三组(以第一主成分得分值为-1和2为分界点). 每一组包括哪几名学生由每个散点旁边的序号可以得知.更详细的信息可从PRINT过程产生的输出数据列表中得到.   按第一主成分得分排序后的主成分得分和原始数据  以上输出列表中把30个观测按第一主成分从小到大重新排序后的输出结果.从这里可以得到分为三组时各组学生的更多的信息如下: G1={11,15,29,10,28

文档评论(0)

118books + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档