统计方法的选择.pptVIP

  1. 1、本文档共49页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
统计方法的选择

统 计 学 方 法 的 分 类 与 选 择 根据研究设计类型选择分析方法 (一)、成组比较的设计 在成组比较设计中,若是两组比较需要应用t检验或X2检验。多组比较需应用方差分析、行×列表X2检验或分级的分析方法。 (二)、配对(自身实验前后)设计 这种类型的设计需要按照配比的t检验,X2检验及配对的病例对照研究方法进行数据分析。 (三)、重复测量的设计 这类设计方法是在给定一个处理因素后在不同的时间重复测量某一效应变量的改变情况。如欲评价生物制品接种后的免疫学效果,在接种后的2周、4周、6周和8周测定抗体滴度,即为此类设计类型。对于这种设计类型的数据需应用重复测量的方差分析方法进行数据的分析。 (四)、多因素设计 若在研究设计中有多个自变量,则可根据因变量的性质选择合适的多因素分析方法。如果自变量是数值变量,则可考虑应用多元回归分析方法、协方差分析方法。如果是分类变量,则可选择logistic回归分析方法、判别分析方法及聚类分析方法等。 根据变量的类型选择分析方法 区别与明确研究的因变量和自变量具有重要的流行病学与生物统计学意义,首先它有助于选择拟研究的变量,对调查表的设计具有指导作用。 其次数据分析阶段可以指导数据分析方法的选择及模型的建立。若因变量是分类变量,则常考虑应用分类变量的分析方法,如卡方检验,logistic回归分析等。如果因变量是数值变量,则考虑应用数值变量的分析方法如t检验、方差分析,协方差分析、多元回归等。同时明确自变量与因变量可以建立正确的统计学分析模型。 因变量应该放在模型的左侧,自变量则放在模型的右侧。 例如欲评价不同治疗方法(口服药物、注射胰岛素及膳食控制)对糖尿病人的治疗效果(血糖水平),在分析时要求调整病人的性别、年龄和病程的影响。对本例的处理需要进行协方差分析,在应用SAS进行分析时,要将血糖水平(因变量)放在模型的左则,而治疗方法或其它协变量(covariate)即性别、年龄和病程放在模型的右侧。又如分析脂蛋白(a)与冠心病发生的关系,则冠心病是否发生为因变量,脂蛋白(a)则为自变量,不可颠倒这种关系。 不同变量类型的数据分析方法选择 不同研究设计和数据类型的数据分析方法选择 数据的分析程序 数据的转换 1 )非正态数据的变量转换 多数的统计学分析方法是建立在数据正态分布的基础上的,若数据不符合正态分布,则不能够应用参数检验(parametric test)的方法,只能应用非参数检验(non-parametric test)的方法,而非参数的方法不是对原始数据的检验,如秩和检验就是非参数检验方法之一,它是对原始数据的秩次(rank)进行检验,这样可能损失数据信息,降低检验效率 在对数值变量进行分析时,需首先根据统计分析方法/统计分析公式的限制性使用条件对数据进行“条件”检验,如正态性检验和方差齐性检验等。很多统计学软件具有方便的正态性检验、方差齐性检验功能如SAS软件等 .若经过检验数据不符合使用条件,就需要进行数据的变量变换,变换后符合条件就可以应用参数检验的方法,否则,只有应用非参数检验的方法。 数据变量转换的方法很多,可以根据数据的分布特征,选择合适的数据转换方法。常用的方法有对数变换,平方根变换或倒数变换等。 2) 分类变量转换成哑变量 若分类变量是二分类尺度及顺序尺度,则可直接应用其原有的数量化数值,但对于名义尺度因为各类别间没有顺序关系,在进行不同分析(包括多元分析、logistic回归、Cox回归等)时,不能使用原始的计算机录入数值,必经进行变量转换。即将该变量转换成(水平数-1)个哑变量,再将这些新转换的变量放入多因素模型中。 t检验的应用条件 两组数据的比较 1样本量比较小(n50); 2样本来自正态总体; 3两样本总体方差齐同; 当两样本方差不齐时可以采用t’检验,变量变换,或者秩和检验。 u检验 两组数据的比较 1样本量足够大(n50) 2样本来自正态总体 3两样本总体方差齐同 当两样本方差不齐时可以采用t’检验,变量变换,或者秩和检验。 方差分析的应用条件 两组以上数据的比较 1各样本是相互独立的随机样本; 2各样本要来自正态总体; 3要求各个样本的总体方差齐同。 多个样本均数间的两两比较 Newman-Keuls检验,亦称Student-Newman-Keuls(SNK)检验,简称q检验。 最小显著性差距(LSD)t检验。 协方差分析 定量分析中,进行两个样本或者多个样本的均数比较时,不仅需要使用假设检验判断其差异是否具有统计学差异,还应该考虑他们之间是否存在混杂因素(协变量)的影响。若存在协变量,则应该通过协方差分析进行校正。协方差分析是

文档评论(0)

118books + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档