- 1、本文档共39页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
智能控制第6章
第6章 神经网络理论基础 模糊控制从人的经验出发,解决了智能控制中人类语言的描述和推理问题,尤其是一些不确定性语言的描述和推理问题,从而在机器模拟人脑的感知、推理等智能行为方面迈出了重大的一步。 神经元具有如下功能: (1)?兴奋与抑制:如果传入神经元的冲动经整和后使细胞膜电位升高,超过动作电位的阈值时即为兴奋状态,产生神经冲动,由轴突经神经末梢传出。如果传入神经元的冲动经整和后使细胞膜电位降低,低于动作电位的阈值时即为抑制状态,不产生神经冲动。 (2) 学习与遗忘:由于神经元结构的可塑性,突触的传递作用可增强和减弱,因此神经元具有学习与遗忘的功能。 决定神经网络模型性能三大要素为: (1)?神经元(信息处理单元)的特性; (2)?神经元之间相互连接的形式—拓扑结构; (3)?为适应环境而改善性能的学习规则。 (3) 自组织网络 网络结构如图所示。Kohonen网络是最典型的自组织网络。Kohonen认为,当神经网络在接受外界输入时,网络将会分成不同的区域,不同区域具有不同的响应特征,即不同的神经元以最佳方式响应不同性质的信号激励,从而形成一种拓扑意义上的特征图,该图实际上是一种非线性映射。这种映射是通过无监督的自适应过程完成的,所以也称为自组织特征图。 Kohonen网络通过无导师的学习方式进行权值的学习,稳定后的网络输出就对输入模式生成自然的特征映射,从而达到自动聚类的目的。 6.5 神经网络特征 神经网络具有以下几个特征: (1)能逼近任意非线性函数; (2)信息的并行分布式处理与存储; 6.6 神经网络控制的研究领域 1 基于神经网络的系统辨识 ① 将神经网络作为被辨识系统的模型,可在已知常规模型结构的情况下,估计模型的参数。 ② 利用神经网络的线性、非线性特性,可建立线性、非线性系统的静态、动态、逆动态及预测模型,实现非线性系统的建模和辨识。 (4) 优化计算 在常规的控制系统中,常遇到求解约束优化问题,神经网络为这类问题的解决提供了有效的途径。 目前,神经网络控制已经在多种控制结构中得到应用,如PID控制、模型参考自适应控制、前馈反馈控制、内模控制、预测控制、模糊控制等。 6.4.2 Delta(δ)学习规则 假设误差准则函数为: 其中, 代表期望的输出(教师信号); 为网络的实际输出, ; 为网络所有权值组成的向量: 为输入模式: 其中训练样本数为 。 神经网络学习的目的是通过调整权值W,使误差准则函数最小。 权值的调整采用梯度下降法来实现,其基本思想是沿着E的负梯度方向不断修正W值,直到E达到最小。数学表达式为: 其中 令 ,则 W的修正规则为 上式称为δ学习规则,又称误差修正规则。 (3) 可以多输入、多输出; (4)便于用超大规模集成电路(VISI)或光学集成电路系统实现,或用现有的计算机技术实现; (5)能进行学习,以适应环境的变化。 (2) 神经网络控制器 神经网络作为实时控制系统的控制器,对不确定、不确知系统及扰动进行有效的控制,使控制系统达到所要求的动态、静态特性。 (3) 神经网络与其他算法相结合 将神经网络与专家系统、模糊逻辑、遗传算法等相结合,可设计新型智能控制系统。 * 模糊控制在处理数值数据、自学习能力等方面还远没有达到人脑的境界。人工神经网络从另一个角度出发,即从人恼的生理学和心理学着手,通过人工模拟人脑的工作机理来实现机器的部分智能行为。 人工神经网络(简称神经网络,Neural Network)是模拟人脑思维方式的数学模型。 神经网络是在现代生物学研究人脑组织成果的基础上提出的,用来模拟人类大脑神经网络的结构和行为。神经网络反映了人脑功能的基本特征,如并行信息处理、学习、联想、模式分类、记忆等。 20世纪80年代以来,人工神经网络(ANN,Artificial Neural Network)研究所取得的突破性进展。神经网络控制是将神经网络与控制理论相结合而发展起来的智能控制方法。它已成为智能控制的一个新的分支,为解决复杂的非线性、不确定、未知系统的控制问题开辟了新途径。 神经网络的发展历程经过4个阶段。 1 启蒙期(1890-1969年) 1890年,W.James发表专著《心理学》,讨论了脑的结构和功能。 1943年,心理学家W.S.McCulloch和数学家W.Pitts提出了描述脑神经细胞动作的数学模型,即M-P模型(第一个神经网络模型)。 6.1 神经网络发展历史 1949年,心理学
文档评论(0)