网站大量收购闲置独家精品文档,联系QQ:2885784924

常用算法的应用.doc

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
常用算法的应用常用算法的应常用算法的应用常用算法的应用

常用算法的应用 1.递推算法(常用级数、数列求和、二分法、梯形积分法、穷举法等); 2.排序算法(选择法、冒泡法); 3.查找算法(顺序查找、折半查找); 4.有序数列的插入、删除操作; 5.初等数论问题求解的有关算法(最大数、最小数、最大公约数、最小公倍数、素数等); 6.矩阵的处理(生成、交换及基本运算); 7.递归算法(阶乘、最大公约数等); 8.字符串处理(插入、删除、连接和比较等) 1.相对于递归算法,递推算法免除了数据进出栈的过程,也就是说,不需要函数不断的向边界值靠拢,而直接从边界出发,直到求出函数值. 比如阶乘函数:f(n)=n*f(n-1) 在f(3)的运算过程中,递归的数据流动过程如下: f(3){f(i)=f(i-1)*i}--f(2)--f(1)--f(0){f(0)=1}--f(1)--f(2)--f(3){f(3)=6} 而递推如下: f(0)--f(1)--f(2)--f(3) 由此可见,递推的效率要高一些,在可能的情况下应尽量使用递推.但是递归作为比较基础的算法,它的作用不能忽视.所以,在把握这两种算法的时候应该特别注意. 2.所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。 分类 在计算机科学所使用的排序算法通常被分类为: 计算的复杂度(最差、平均、和最好表现),依据串列(list)的大小(n)。一般而言,好的表现是O。(n log n),且坏的行为是Ω(n2)。对於一个排序理想的表现是O(n)。仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要Ω(n log n)。 记忆体使用量(以及其他电脑资源的使用) 稳定度:稳定排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。也就是一个排序算法是稳定的,就是当有两个有相等关键的纪录R和S,且在原本的串列中R出现在S之前,在排序过的串列中R也将会是在S之前。 一般的方法:插入、交换、选择、合并等等。交换排序包含冒泡排序(bubble sort)和快速排序(quicksort)。选择排序包含shaker排序和堆排序(heapsort)。 当相等的元素是无法分辨的,比如像是整数,稳定度并不是一个问题。然而,假设以下的数对将要以他们的第一个数字来排序。 (4, 1) (3, 1) (3, 7) (5, 6) 在这个状况下,有可能产生两种不同的结果,一个是依照相等的键值维持相对的次序,而另外一个则没有: (3, 1) (3, 7) (4, 1) (5, 6) (维持次序) (3, 7) (3, 1) (4, 1) (5, 6) (次序被改变) 不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。不稳定排序算法可以被特别地时作为稳定。作这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个物件间之比较,就会被决定使用在原先资料次序中的条目,当作一个同分决赛。然而,要记住这种次序通常牵涉到额外的空间负担。 排算法列表 在这个表格中,n是要被排序的纪录数量以及k是不同键值的数量。 稳定的 冒泡排序(bubble sort) — O(n2) 鸡尾酒排序 (Cocktail sort, 双向的冒泡排序) — O(n2) 插入排序 (insertion sort)— O(n2) 桶排序 (bucket sort)— O(n); 需要 O(k) 额外 记忆体 计数排序 (counting sort) — O(n+k); 需要 O(n+k) 额外 记忆体 归并排序 (merge sort)— O(n log n); 需要 O(n) 额外记忆体 原地归并排序 — O(n2) 二叉树排序 (Binary tree sort) — O(n log n); 需要 O(n) 额外记忆体 鸽巢排序 (Pigeonhole sort) — O(n+k); 需要 O(k) 额外记忆体 基数排序 (radix sort)— O(n·k); 需要 O(n) 额外记忆体 Gnome sort — O(n2) Library sort — O(n log n) with high probability, 需要 (1+ε)n 额外记忆体 不稳定 选择排序 (selection sort)— O(n2) 希尔排序 (shell sort)— O(n log n) 如果使用最佳的现在版本 Comb sort — O(n log n) 堆排序 (heapsort)— O(n log n) Sm

文档评论(0)

cxiongxchunj + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档