网站大量收购独家精品文档,联系QQ:2885784924

APhrase-BasedModelofAlignmentforNaturalLanguage.pptVIP

  1. 1、本文档共25页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
APhrase-BasedModelofAlignmentforNaturalLanguage

A Phrase-Based Model of Alignment for Natural Language Inference Bill MacCartney, Michel Galley, and Christopher D. Manning Stanford University 26 October 2008 Natural language inference (NLI) (aka RTE) Does premise P justify an inference to hypothesis H? An informal notion of inference; variability of linguistic expression Alignment example Approaches to NLI alignment NLI alignment vs. MT alignment Doubtful — NLI alignment differs in several respects: Monolingual: can exploit resources like WordNet Asymmetric: P often longer has content unrelated to H Cannot assume semantic equivalence NLI aligner must accommodate frequent unaligned content Little training data available MT aligners use unsupervised training on huge amounts of bitext NLI aligners must rely on supervised training much less data Contributions of this paper In this paper, we: Undertake the first systematic study of alignment for NLI Existing NLI aligners use idiosyncratic methods, are poorly documented, use proprietary data Examine the relation between alignment in NLI and MT How do existing MT aligners perform on NLI alignment task? Propose a new model of alignment for NLI: MANLI Outperforms existing MT NLI aligners on NLI alignment task The MANLI aligner A model of alignment for NLI consisting of four components: Phrase-based alignment representation A feature-based scoring function Score edits as linear combination of features, then sum: Decoding using simulated annealing Perceptron learning of feature weights We use a variant of averaged perceptron [Collins 2002] The MSR RTE2 alignment data Previously, little supervised data Now, MSR gold alignments for RTE2 [Brockett 2007] dev test sets, 800 problems each Token-based, but many-to-many allows implicit alignment of phrases 3 independent annotators 3 of 3 agreed on 70% of proposed links 2 of 3 agreed on 99.7% of proposed links merged using majority rule Evaluation on MSR data We evaluate several systems on MSR data A simple baseline aligner MT a

文档评论(0)

***** + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:8016031115000003

1亿VIP精品文档

相关文档