网站大量收购独家精品文档,联系QQ:2885784924

ApplyingtheHiddenMarkovModelMethodologyforUnsupe.ppt

  1. 1、本文档共44页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
ApplyingtheHiddenMarkovModelMethodologyforUnsupe

Applying the Hidden Markov Model Methodology for Unsupervised Learning of Temporal Data Cen Li1 and Gautam Biswas2 1Department of Computer Science Middle Tennessee State University 2Department of EECS Vanderbilt University Nashville, TN 37235. USA. biswas@ biswas@/~biswas June 21, 2001 Problem Description Most real world systems are dynamic, e.g., Physical plants and Engineering systems Human Physiology Economic systems Systems are complex: hard to understand, model, and analyze But our ability to collect data on these systems has increased tremendously Task: Use data to automatically build models, extend incomplete models, and verify and validate existing models using the data available. Why models? Formal, abstract representation of phenomena or process Enables systematic analysis and prediction Our goal: Build models, i.e., create structure from data using exploratory techniques Challenge: Systematic and useful clustering algorithms for temporal data Outline of Talk Example Problem Related work on temporal data clustering Motivation for using Hidden Markov Model (HMM) representation Bayesian HMM clustering methodology Experimental results Synthetic Data Real world ecological data Conclusions and future work Example of Dynamic System Problem Description Unsupervised Classification (Clustering) Given data objects described by multiple temporal features: (1) to assign category information to individual objects by objectively partitioning the objects into homogeneous groups such that the within group object similarity and the between group object dissimilarity are maximized, (2) to form succinct description for each category derived. Related Work on Temporal Data Clustering Motivation for using HMM Representation What are our modeling objectives ? Why do we choose the HMM representation ? The hidden states valid stages of a dynamic process Direct probabilistic links probabilistic transitions among different stages

文档评论(0)

***** + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:8016031115000003

1亿VIP精品文档

相关文档