数据泛化 data cub computation and data generalization数据泛化 data cube computation and data generalization数据泛化 data cube computation and data generalization数据泛化 data cube computation and data generalization.ppt

数据泛化 data cub computation and data generalization数据泛化 data cube computation and data generalization数据泛化 data cube computation and data generalization数据泛化 data cube computation and data generalization.ppt

  1. 1、本文档共85页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Data Mining: Concepts and Techniques Data Mining: Concepts and Techniques — Chapter 4 — Chapter 4: Data Cube Computation and Data Generalization Efficient Computation of Data Cubes Exploration and Discovery in Multidimensional Databases Attribute-Oriented Induction ─ An Alternative Data Generalization Method Efficient Computation of Data Cubes Computing full/iceberg cubes: 3 methodologies bottom-up: Multi-Way array aggregation (Zhao, Deshpande Naughton, SIGMOD’97) top-down: Bottom-up computation: BUC (Beyer Ramarkrishnan, SIGMOD’99) H-cubing technique (Han, Pei, Dong Wang: SIGMOD’01) Integrating Top-Down and Bottom-Up: Star-cubing algorithm (Xin, Han, Li Wah: VLDB’03) High-dimensional OLAP: A Minimal Cubing Approach (Li, et al. VLDB’04) Computing alternative kinds of cubes: Partial cube, closed cube, approximate cube, etc. Preliminary Tricks (Agarwal et al. VLDB’96) Sorting, hashing, and grouping operations are applied to the dimension attributes in order to reorder and cluster related tuples Aggregates may be computed from previously computed aggregates, rather than from the base fact table Smallest-child: computing a cuboid from the smallest, previously computed cuboid Cache-results: caching results of a cuboid from which other cuboids are computed to reduce disk I/Os Preliminary Tricks (Agarwal et al. VLDB’96) Amortize-scans: computing as many as possible cuboids at the same time to amortize disk reads Share-sorts: sharing sorting costs cross multiple cuboids when sort-based method is used Share-partitions: sharing the partitioning cost across multiple cuboids when hash-based algorithms are used Multi-Way Array Aggregation Array-based “bottom-up” algorithm Simultaneous aggregation on multiple dimensions Intermediate aggregate values are re-used for computing ancestor cuboids Cannot do Apriori pruning: No iceberg optimization Multi-way Array Aggregation for Cube Computation (MOLAP) Partition arrays into chunks Compressed sparse array addressing: (ch

您可能关注的文档

文档评论(0)

cxiongxchunj + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档