HHT和HMM在血细胞信号识别中的应用.docVIP

HHT和HMM在血细胞信号识别中的应用.doc

  1. 1、本文档共5页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
HHT和HMM在血细胞信号识别中的应用.doc

HHT和HMM在血细胞信号识别中的应用   摘 要: 针对血细胞信号具有多形态、非线性、非平稳的特点,提出将希尔伯特黄变换(HHT)和隐马尔可夫模型(HMM)相结合的血细胞信号识别方法。该方法采用HHT对血细胞信号进行分析,选取经过经验模态分解得到的各本质模态函数中相关性较大的分量,以这些分量的能量矩作为信号的特征量,由HMM训练得到正常人和病患者的模型参数并用做分类识别。实验结果表明,该方法可以较好地识别正常人和病患者的血细胞信号,综合准确率达89.13%。   关键词: 信号检测与分析; 希尔伯特黄变换; 经验模态分解; 隐马尔科夫模型; 特征提取; 血细胞信号分析   中图分类号: TN911.7?34; TP 391.4 文献标识码: A 文章编号: 1004?373X(2016)23?0058?05   Application of HHT and HMM in blood cell signal recognition   YIN Cui, TAO Ling, LONG Wei   (School of Information Engineering, Nanchang University, Nanchang 330031, China)   Abstract: For the multi?form, nonlinear and non?stationary characteristics of the blood cell signal, the blood cell signal re?cognition method based on Hilbert Huang transform (HHT) and hidden Markov model (HMM) is proposed. The HHT is used in the method to analyze the blood cell signal. The strong dependency components in each intrinsic mode function obtained with empirical mode decomposition are selected, and their energy moments are taken as the signal feature value to achieve the model parameters of healthy people and patient by HMM training for classification and recognition. The experimental results indicate this method can recognize the blood cells signals of the healthy people and patient, and the synthetical accuracy rate can reach up to 89.13%.   Keywords: signal detection and analysis; Hilbert Huang transform; empirical mode decomposition; hidden Markov mo?del; feature extraction; blood cell signal analysis   0 引 言   作为一种非常普遍的检测方法,血细胞分析在临床疾病的诊断及健康体检等方面发挥着重要的作用[1]。一般地,疾病会引起血液中红细胞、白细胞、血小板等血细胞数量变化,因此通过对血细胞的分类识别有助于临床上判断人体健康与否。目前国内外的血细胞分析仪大多采用库尔特原理采集原始信号,基本原理是悬浮在电解液中的血细胞随电解液通过小孔管时,会导致小孔管内外两电极间电阻发生瞬时变化,产生电位脉冲[2]。血细胞的大小和数目会引起脉冲信号的大小和次数的变化。针对血细胞信号多形态、非线性和非平稳的特点,一般需采用短时傅里叶变换(Short?time Fourier Transform,STFT),小波变换(Wavelet Transform,WT)或Wigner?Ville分布等时频分析的方法,但这些方法分析非平稳信号均有各自的不足,短时傅里叶变换容易受到窗函数的影响,小波变换的结果在很大程度上取决于小波的选择,Wigner?Ville分布易受到交叉相干扰[3]。本研究采用由Huang提出的希尔伯特黄变换(Hilbert Huang Transform,HHT)方法提取血细胞信号特征向量,以避免上述种种不足[4],并采用隐马

文档评论(0)

yingzhiguo + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:5243141323000000

1亿VIP精品文档

相关文档