光纤技术发展及其在电力通信中的应用.docVIP

光纤技术发展及其在电力通信中的应用.doc

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
光纤技术发展及其在电力通信中的应用.doc

光纤技术发展及其在电力通信中的应用   摘 要:在电力通信系统中光纤技术至关重要。本文分析了光纤技术的发展与演变历史,总结出了光纤技术的几种主要类型,并就几种新型的光纤通信技术的特点及其在电力通信系统当中的应用展开了具体的分析、探讨,阐述了这些光纤在损耗、有效面积、大小尺寸等方面的优化。最终希望本文关于几种新型光纤在电力通信应用中的研究工作,能够为相关的智能电网建设工作提供一些可供参考的内容。   关键词:光纤技术;电力通信;应用   中图分类号:TN929 文献标识码:A   电力通信作为一种专用通信网络,其主要是应用在对电力部门特殊通信要求的满足方面,并给予电网自动化控制、商业化营运以及现代化的管理工作来提供以稳定的信息通信服务。鉴于光纤通信的抗电磁干扰能力较强、传输容量较大以及传输损耗小等优势特性,其现已被大规模的应用到了电力通信系统之中。尤其是近些年来关于特高压工程的发展,全国联网工程及跨区域供电工程日渐增多,由此也就使得输电线路及通信工程越来越多。但由于光纤中继站的选址、建设及维护工作难度均相对较大,因此就展开相关的研究工作便具有极其重要的作用与价值,应当引起人们的重视与思考,据此,下文将展开具体的论述。   一、光纤技术的发展   光纤通信技术在过去40多年的发展历程当中,取得了极大的发展与进步。业务的快速发展促成了通信系统的持续升级,同时相关的系统及器件进步对于光纤技术也便提出了更高的要求,并推动新型光纤的研发工作。光通信传输系统主要经过了4个发展演变阶段,每一阶段都有着光纤技术进步的影子。   (一)多模光纤   第一代光纤通信系统所选用的是850nm的LED光源,光纤材料为多模光纤。此种光纤的主要特点是纤芯较粗同时孔径较大;能够十分便捷地将信号源耦合到光纤中,光纤的连接与熔接较为简便。但伴随着通信距离的进一步加大,以及传输速率的提升,多模光纤已经难以满足于系统要求。   (二)单模光纤   在20世纪70年代后,伴随着半导体激光器的出现,光纤长波长传输窗口的大规模运用和单模光纤熔接技术的发展,促使单模光纤传输系统走上了历史舞台。这一光纤技术主要是可将模间色散消除。所采用的单模激光器长度为1310nm,相较于第一代光纤系统的850nm LED光源而言,波长区段衰减更小,同时其色散几乎完全消除,因而在长距离通信传输方面单模光纤也就逐渐取代了多模光纤。   (三)色散位移光纤   单模光纤波长区段在衰减至1550nm时,波长色散异常明显,这也就导致高速率、长距离的通信传输受到了影响。因此色散位移光纤也便应运而生,这一光纤能够在1550nm波长段将色散值降至最低,仅需利用几纳米的光谱宽度,至此也就发展到了波长为1550nm的第三代光纤传输系统。   (四)大容量光纤   由于加入了对掺铒光纤放大器以及波分复用技术的应用,也就使得第四代大容量光纤传输系统随之出现。经研究证实在1550nm时进行波分复用传输色散位移光纤已经无法满足要求,其主要的原因是四波混频非线性效应在色散为零时最强,也就造成了互相临近信道间的串话影响十分严重。因此为了改善这一现状第四代基于多信道传输的大容量光纤传输系统也便随之产生。   二、光纤类型划分   对于电力系统之中的通信光纤进行类型划分,其主要内容见表1。   光纤是光信号的传输媒介,其所具备的特点性质将会对光纤传输系统的容量与距离产生直接性的影响。为了促进通信系统能够满足于不断增加的信息传输量,在进行光纤通信系统建设工作时,应当选取出适宜且性价比最高的组网架构。对于电力通信系统的选取与应用同样需按照相应的原则,并依据系统实际状况、发展规划容量、光纤特性等进行综合考量。   三、光纤新技术在电力通信中的应用   (一)超低损耗光纤   传统的G.652光纤之中利用在纤芯之中掺加锗来增强纤芯折射率,并与二氧化硅包层材料共同产生出折射率,与二氧化硅包层材料之间产生出折射差,并以此来确保入射光在单模光纤之中的传播。然而受到在纤芯之中加入GeO2的影响,便会由此造成光纤的耗损增大,并使得原本的G.652传输距离穿件到0.185dB/km左右。大量的应用试验均表明,光纤当中的耗损大多是因光纤材料瑞利散射耗损以及吸收耗损。鉴于掺锗元素的影响,会导致较大的光纤瑞利散射情况,使其衰减情况难以减小。应用纯硅芯单模光纤,可降低应瑞利散射而造成的衰减,能够使光纤损耗进一步改善。   为了确保纤芯同包层间折射率差值,应当减小包层的折射率,对此可利用在包层之中加入氟元素来达到。利用纯硅纤芯技术,可将石英光纤的衰减降低至最低即0.15dB/km。将之应用在陆上长距离传输光纤中,应在减小衰减率的同时还应能够确保同现存的G.652光纤所兼容。   (二)大有效面积光纤

文档评论(0)

yingzhiguo + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:5243141323000000

1亿VIP精品文档

相关文档