基于ZigBee+云服务器的桥梁基质稳定性监测系统.docVIP

基于ZigBee+云服务器的桥梁基质稳定性监测系统.doc

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于ZigBee+云服务器的桥梁基质稳定性监测系统.doc

基于ZigBee+云服务器的桥梁基质稳定性监测系统   摘 要:随着科技的发展,人类对灾害的监测预警要求也越来越高,桥梁的基质稳定性是整个桥梁稳定性的重要基础,直接关系到群众的生命财产安全。文中设计了一套实时监测桥梁基质高度变化的物联网+云服务器系统。利用ZigBee技术设计的高度监测传感器监测各桥墩的基质高度,利用云服务器分析处理数据,实现监测及预警功能。   关键词:CC2530;SIM900A;云服务器;桥梁稳定性   中图分类号:TP277.2 文献标识码:A 文章编号:2095-1302(2016)12-00-03   0 引 言   在桥梁工程领域,随着各类自然及人为灾害的增加,对桥梁稳定性监测和预警的要求也越来越高。目前,桥梁监测主要集中在桥面、桥墩等桥体的监测,而对于桥梁桥墩所在基质(基础地质条件)的监测却相对较少。基质是桥梁稳定的重要基础,当基质经过流水冲刷,地质条件发生变化时,桥墩的稳定性会随基质变化直接影响整个桥梁的稳定性。   本文设计了一个基于CC2530无线传感网络,利用GPRS通讯及云服务器的桥梁基质监测系统。实现了将监测所得的各桥墩基质高度数据上传至云服务器处理并预警的功能。   1 系统简介   系统设计包含物联网层、承载网络和应用层三个部分,其中物联网层将CC2530作为基础,设计监测基质高度的无线传感器,每个桥墩都安装一个传感器作为ZigBee无线网络的终端或中继设备。协调器与SIM900A通过串口进行数据通讯,控制SIM900A连接GPRS,通过GPRS网络发送数据至服务器或接收来自服务器的指令。系统基础结构如图1所示。   根据ZigBee网络的特点[1],网络内使用短地址进行通讯,而重新组网后短地址可能会发生变化,系统设计使用CC2530的长地址(IEEE地址)作为区分唯一设备的ID,长地址为64位全球唯一识别码,不会更改。服务器数据库保存桥墩的长地址,每次终端注册时数据库更新长地址对应的短地址。物联网层与服务器通讯简图如图2所示。   系统设计一座桥只有一个协调器和GSM模块,即一座桥只有一个确定的IP地址和端口。如图2所示,系统要与某座桥的某个桥墩进行通讯的步骤为:查询桥墩绑定的长地址――查询长地址对应的IP、端口及短地址――往IP和端口发送包含短地址的数据――IP对应的GSM模块收到数据――发送到协调器――通过短地址发送到终端。如此,系统即可实现服务器与多座桥不同桥墩传感器之间的通讯。   2 系统硬件设计   2.1 基质监测传感器设计   由于桥梁桥墩基质测量的特殊性,没有现成的即方便又经济的传感器可以使用,论文以CC2530为核心芯片设计了一款综合测量和无线通讯传感器。传感器采用磁环+普通的霍尔传感器作为测量部分[2],CC2530作为中控部分,磁环和塑料垫片相隔放置于一定长度的PVC管中,一个磁环和垫片的高度为5 mm,即测量的精度为5 mm。传感器样机如图3所示。   图中所示为横向放置,正常安装时为竖向安装,传感器底座和PVC管为一体,穿过CC2530电路板,两者之间可以相互移动,当有位移时,电路板上的霍尔传感器感应到变化则通知CC2530产生一次中断,每产生一次中断移动5 mm距离。传感器在桥墩上安装的示意图如图4所示。   由图4可知,无线传感器的CC2530部分与大钢管为一体,安装固定在桥墩上,底座、PVC管同小钢管固定,PVC管穿过CC2530的感应器,小钢管套入大钢管内,底座沉入水底与基质接触。当基质高度降低时,小钢管跟随降低,当降低高度达到分辨率5 mm时,CC2530产生一次中断,系统监测到高度变化后,传感器计算当前高度,将高度数据通过协调器发送到服务器。   2.2 协调器设计   协调器电路设计与常用CC2530电路设计类似,加入SIM900A模块,利用串口与协调器通讯。其样机如图5所示。   2.3 供电设计   考虑到设备都在户外运行,系统设计协调器和传感器都采用太阳能板+蓄电池的供电模式。   3 CC2530程序设计   根据系统功能,程序设计分为协调器程序和无线传感器程序两个部分。无线传感器可以作为终端或中继使用。   3.1 协调器程序设计   协调器主要用于数据处理,组建ZigBee网络,接收桥墩的监测数据并通过SIM900A发送到服务器,接收服务器的控制查询数据并将数据下发至终端或中继设备。程序主要分为组网、串口通讯、无线通讯三个模块。   在组网程序方面,协调器运行Z-Stack协议栈与终端或中继设备组网,该部分程序只需在Z-Stack协议栈[3]基础上稍做修改即可。   串口程序的设计主要使用AT指令与SIM900A模块进行通讯。通过程序设计,让CC2530根据AT指令模

文档评论(0)

yingzhiguo + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:5243141323000000

1亿VIP精品文档

相关文档