网站大量收购独家精品文档,联系QQ:2885784924

《海量数据挖掘-王永利》ch04-streams2.pptVIP

  1. 1、本文档共46页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
* J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, * J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, * J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, 0thmoment = number of distinct elements The problem just considered 1st moment = count of the numbers of elements = length of the stream Easy to compute 2nd moment = surprise number S = a measure of how uneven the distribution is * J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, * J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, * [Alon, Matias, and Szegedy] J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, * J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, * Time t when the last i is seen (ct=1) Time t when the penultimate i is seen (ct=2) Time t when the first i is seen (ct=mi) Group times by the value seen a a a a 1 3 2 ma b b b b Count: Stream: mi … total count of item i in the stream (we are assuming stream has length n) J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, * a a a a 1 3 2 ma b b b b Stream: Count: J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, * * J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, (1) The variables X have n as a factor – keep n separately; just hold the count in X (2) Suppose we can only store k counts. We must throw some Xs out as time goes on: Objective: Each starting time t is selected with probability k/n Solution: (fixed-size sampling!) Choose the first k times for k variables When the nth element arrives (n k), choose it with probability k/n If you choose it, throw one of the previously stored variables X out, with equal probability J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, * New Problem: Given a stream, which items appear more than s times in the window? Possible solution: Think of the

您可能关注的文档

文档评论(0)

1243595614 + 关注
实名认证
文档贡献者

文档有任何问题,请私信留言,会第一时间解决。

版权声明书
用户编号:7043023136000000

1亿VIP精品文档

相关文档