纳米技术与功能分高子材料.docVIP

  1. 1、本文档共12页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
纳米技术与功能分高子材料

纳米技术与功能高分子材料 王德禧 (中国科学院化学研究所,北京,100080) 摘要:进入21世纪,伴随着纳米科技的发展,塑料产业迎来了又一个春天,纳米材料独特的表面界面效应; 小尺寸效应及量子尺寸效应和聚合物密度小, 耐腐蚀、易加工等优良特性有机的结合,形成了一类新型功能高分子材料。据美国 BRG Townsend 咨询公司的调研报告介绍:2001年全球塑料添加剂消费总量约798.4万吨,总产值达146亿美元,其中功能型助剂约占80%,足以说明功能高分子材料在塑料产业中的重要地位。新材料、新技术的不断涌现既是推动塑料产业持续发展的动力,又象一块磁石在吸引着企业家的眼球,是他们寻求新的投资方向的风向标。下面例举的是2005年国内外报刊、杂志上陆续发表的纳米技术与功能高分子材料的应用实例,供读者参考。 院士评出年中国十大科技进展新闻纳米“超级开关”材料研制成功中科院化学研究所江雷研究员领导的研究小组成功地通过调节“光”和“温度”实现了纳米结构表面材料超疏水与超亲水之间的可逆转变,制备出超疏水/超亲水“开关”材料,在功能纳米界面材料研究领域取得了重要进展。其论文分别在《美国化学会志》、德国《应用化学》发表后,得到英国《自然》和美国《科学》杂志的高度评价。这两项研究成果将可能应用于基因传输、无损失液体输送、微流体、生物芯片、药物缓释等领域,具有极为广阔的应用前景。?疏水性和亲水性是固体材料表面所具有的两种重要的特性。通常人们穿着的服装是亲水的,很容易被水湿透(不疏水);而塑料布等就是疏水的,不能被水透过(不亲水)。如果现在用温度调控的超疏水/超亲水“开关”材料制作服装,那么,夏天温度高时衣服是亲水的,亲水吸汗就不会感到太热;冬天温度低时衣服就变成疏水的,防寒又保暖。日本开发出新型纳米开关日本物质材料研究机构的研究人员新开发出一种纳米开关,利用原子受电压控制后产生的排列形状变化达到开关电流的目的。这一成果发表在新一期的《自然》杂志上。 研究人员在实验中首先将硫化银电极和白金电极之间的间隔定为1纳米左右。之后,在加上电压的状态下,硫化银电极的个银原子排列产生变化,构成一个“微小的突起”得以伸长并连接上白金电极;撤掉电压后银原子的“突起”状排列消失,保持与白金电极断开的状态。据悉,这种纳米开关消耗的电力只有半导体元件的百万分之一。此外,通过改变传统开关的结构还有望开发出更加轻小的新型便携装置,把计算机、数码相机、电视机等各种功能集中在一起。专家认为,结合现在的半导体技术,这一成果可用于制造新型存储器等许多域,产品有望在年内面市。 传播,消除了通常情况下首先要将光信号转换为电信号的瓶颈障碍,因此大大降低了信号传输的时间。到目前为止,绝大多数“电-光材料”的研究都集中在像铌酸锂这样的无机晶体上,主要原因是这类材料的折射率会在外加电场的作用下发生变化,但这类材料价格昂贵而且很难与相关技术集成。相反,由Marks等人开发的有机材料能够在低温下在任何底垫上生长,且成本低廉,从而让它们很容易与光波导和其它设备结构集成。 有机薄膜存储能力达光盘材料十万倍[4] 近日,由中科院化学研究所宋延林、上海有机化学研究所丁奎岭和中科院物理研究所高鸿钧主持,我国科研人员在有机超高密度信息存储研究领域取得新的进展。他们利用化学方法制备的有机超分子薄膜,成功实现纳米尺寸信息点的写入,对应信息存储密度每平方厘米超过1013比特,是现有光盘存储能力的十万倍。 DNA多层纳米管研制成功[5] 首个完全由DNA分子组成的多层纳米管研制成功。这种多层纳米管是由许多DNA分子链交缠在一起组成的,当加热时,这种纳米管会分解,释放出一个个DNA分子,这种纳米管是由佛罗里达大学的化学家Charles R. Martin和他的同事合成并表证的。这些纳米管将来可以用于DNA传送工具,如治疗基因紊乱等疾病,因为这些纳米管都是由DNA组成。这种纳米管是在含有100nm的孔洞的氧化铝膜上组装成功的。 有机磷酸酯膜在这种纳米孔洞上沉积,Zr(IV)被用来将单个DNA分子链上的磷酸酯基与有机磷酸酯联接起来,连接上去的DNA分子链同其旁边的DNA分子链相互交缠,从而组成柱状结构,除了连接剂层和底层有三层结构。然后去掉模板得到完全由DNA组成的纳米管。 这种新的DNA纳米管使在不分离载体的情况下传递DNA分子成为可能,但这些纳米管必须能够穿透细胞膜并能够达到细胞核,这些还得有待于进一步去证明。 金纳米粒子释放出NO [6] 目前美国North Carolina大学的化学家制备出一种可以定量释放NO的金纳米粒子。这种纳米粒子被证实在诸如促进伤口愈合和扩张皮下血管软膏等生物医学和制药学上有很好的用途。化学家制备的这种催化产生NO的纳米粒子是由外面包裹一层烷基硫醇配体保护层的金原子纳米粒子簇组成。他们将一

文档评论(0)

jdy261842 + 关注
实名认证
文档贡献者

分享好文档!

1亿VIP精品文档

相关文档