网站大量收购闲置独家精品文档,联系QQ:2885784924

邓仰东:基于GPU的高性能嵌入式计算_CUDA技术沙龙课件.ppt

邓仰东:基于GPU的高性能嵌入式计算_CUDA技术沙龙课件.ppt

  1. 1、本文档共54页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
邓仰东:基于GPU的高性能嵌入式计算_CUDA技术沙龙课件.ppt

The routing table contains information about the topology of the network immediately around it. The construction of routing tables is the primary goal of routing protocols. A Network Intrusion Detection System (NIDS) is an intrusion detection system that tries to detect malicious activity Microarchitectural Enhancements Uniformly one thread for one packet No thread block necessary Directly schedule and issue warps GPU fetches packet IDs from task queue when Either a sufficient number of packets are already collected Or a given interval passes after last fetch CPU-maintained task queue Delayed Commit Queue GPU Core GPU Core GPU Core GPU Core GPU Core GPU Core Results: Throughput Results: Packet Latency Outline Motivation and background Morphing GPU into a network processor High performance radar DSP processor Conclusion High Performance Radar DSP Processor Motivation Feasibility of GPU for DSP processing Designing a massively parallel DSP processor Research Objectives High performance DSP processor For high-performance applications Radar, sonar, cellular baseband, … Performance requirements Throughput ≥ 800GFLOPs Power Efficiency ≥ 100GFLOPS/W Memory bandwidth ≥ 400Gbit/s Scale to multi-chip solutions Current DSP Platforms *GDDR5: Peak Bandwidth 28.2GB/s Processor Frequency # cores Throughput Memory Bandwidth Power Power Efficiency (GFLOPS/W) TI TMS320C6472-700 500MHz 6 33.6GMac/s NA 3.8W 17.7 FreeScale MSC8156 1GHz 6 48GMac/s 1GB/s 10W 9.6 ADI TigerSHARC ADSP-TS201S 600MHz 1 4.8GMac/s 38.4GB/s (on-chip) 2.18W 4.4 PicoChip PC205 260MHz 1GPP+ 248DSPs 31GMac/s NA 5W 12.4 Intel Core i7 980XE 3.3GHz 6 107. 5GFLOPS 31.8GB/s 130W 0.8 Tilera Tile64 866MHz 64 CPUs 221GFLOPS 6.25GB/s 22W 10.0 NVidia Fermi GPU 1GHz 512 scalar cores 1536GFLOPS 230GB/s * 200W 7.7 High Performance Radar DSP Processor Motivation Feasibility of GPU for DSP processing Designing a massively parallel DSP processor HPEC Challenge - Radar Benchmarks Benchmark Description TDFIR Time-domain finite i

文档评论(0)

带头大哥 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档