- 1、本文档共6页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
实验一
灰度图像信息熵的相关计算与分析
一、
1、复习信息熵,条件熵,联合熵,互信息,相对熵的基本定义, 掌握其计算方法,学习互信息与相对熵的区别之处并比较两者的有效性,加深对所学理论理论知识的理解。
2、掌握图像的的基本处理方法,了解图像的编码原理。
3、学习使用matlab,掌握matlab的编程。
4、通过对比分析,。在解决问题的过程中,锻炼自身对问题的研究能力。
二、实验内容与要求
1、计算灰度图像的信息熵,条件熵,联合熵,互信息,相对熵,并比较互信息和相对熵在判别两幅图像的联系与区别。
2、利用matlab编程计算,并书写完整实验报告。
三、实验原理
1、信息熵
离散随机变量X的熵H(X)为:
图像熵是一种特征的统计形式,它反映了图像中平均信息量的多少。图像的一 维熵表示图像中灰度分布的聚集特征所包含的信息量,将图像的灰度值进行数学统计,便可得到每个灰度值出现的次数及概率,则定义灰度图像的一元灰度熵为:
利用信息熵的计算公式便可计算图像的信息熵,求出任意一个离散信源的熵(平均自信息量)。自信息是一个随机变量,它是指某一信源发出某一消息所含有的信息量。所发出的消息不同,它们所含有的信息量也就不同。任何一个消息的自信息量都代表不了信源所包含的平均自信息量。
信息熵的意义:信源的信息熵H是从整个信源的统计特性来考虑的。它是从平均意义上来表征信源的总体特性的。对于某特定的信源,其信息熵只有一个。不同的信源因统计特性不同,其熵也不同。
图像的一维熵可以表示图像灰度分布的聚集特征,却不能反映图像灰度分布的空间特征,为了表征这种空间特征,可以在一维熵的基础上引入能够反映灰度分布空间特征的特征量来组成图像的二维熵。选择图像的邻域灰度均值作为灰度分布的空间特征量,与图像的像素灰度组成特征二元组,记为( i, j ),其中i 表示像素的灰度值,j 表示邻域灰度,
上式能反应某像素位置上的灰度值与其周围像素灰度分布的综合特征,其中 f(i, j)为特征二元组(i, j)出现的频数,N 为图像的尺度,定义离散的图像二维熵为:
构造的图像二维熵可以在图像所包含信息量的前提下,突出反映图像中像素位置的灰度信息和像素邻域内灰度分布的综合特征。
2、联合熵
离散型随机变量(X,Y)的联合分布函数为,其联合熵:
3、条件熵
若,则条件熵为:
4、相对熵
相对熵是对两种分布之间的偏移的测量,在统计学中,以概率比的对数的期望形式出现。相对熵是两个概率分布P和Q差别的非对称性的度量。是用来度量使用基于Q的编码来编码来自P的样本平均所需的额外的比特个数。典型情况下,P表示数据的真实分布,Q表示数据的理论分布,模型分布,或P的近似分布。
相对熵的定义如下: p(x) 和 q(x)之间相关熵为
5、互信息
互信息是一个随机变量包含另一个随机变量多少的一个量度,是一个随机变量由另一个随机变量的信息其不确定性的减少。
互信息的定义如下:两个随机变量X和Y,联合概率分布函数p(x, y),边缘概率分布函数为p(x)和p(y),互信息为联合分布和分布乘积之间的相对熵。
互信息是一有用的信息度量,指两个事件集合之间的相关性,互信息的值越大(小),相关程度越高(低)。相对熵是两个概率分布差别的非对称性的度量,是用来度量使用基于一个的编码来编码来自另一个的样本平均所需的额外的比特个数,相对熵的值越大(小),非对称性的量度越大(小),侧面反映相关程度的低(高)。两者都可以用来衡量两幅图像的相关程度,但是也有区别。
四、实验步骤
1) 输入一幅图像,并将其转换成灰度图像。
2) 统计出图像中每个灰度阶象素概率。
3) 统计出图像中相邻两象素的灰度阶联合分布矩阵。
4) 计算出每幅图像的熵和成对图像的条件熵,联合熵,互信息,相对熵
5)分析实验结果。
五、实验结果分析
图片的信息熵与之间
信息熵 联合熵 互信息 条件熵 相对熵 图一 7.5976 14.7557 0.5042 7.0993 0.0174 图二 7.6624 7.1581 图一 7.5976 14.8669 0.4425 7.1550 0.0395 图三 7.7119 7.2693 图一 7.5976 14.9364 0.3992 7.1984 0.0599 图四 7.7380 7. 3388 图一 7.5976 14.5211 0.7323 6.8652 0.0088 图五 7.6559 6.9235
2)实验中的灰度图像
您可能关注的文档
最近下载
- 废旧塑料购销合同6篇.docx VIP
- 山东省烟台市芝罘区2022-2023学年七年级(五四学制)上学期期中地理试题(含答案).docx VIP
- 建筑工程施工技术交底大全.docx
- 柔性光伏钢构及组件安装施工方案.docx VIP
- 中成药学讲稿祛暑中成药.docx VIP
- 石油化工企业设计防火规范(GB50160-2018-).doc
- 山东省烟台市芝罘区(五四制)2023-2024学年六年级上学期期中考试生物试题(解析版).docx VIP
- 医疗机构医院感染管理专职人员管理办法(2020年版).pdf
- 南宁师范大学信息技术课程与教学考研真题试题2019年.pdf
- 加强风电设备管理提升风机可利用率(电力系统及自动化范文).doc
文档评论(0)