- 1、本文档共11页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Bootstrapcondenceintervals2014JonathanLearningGoals
Bootstrap con?dence intervals Class 24, 18.05, Spring 2014
Jeremy Orlo? and Jonathan Bloom
1 Learning Goals
1. Be able to construct and sample from the empirical distribution of data. 2. Be able to explain the bootstrap principle. 3. Be able to design and run an empirical bootstrap to compute con?dence intervals. 4. Be able to design and run a parametric bootstrap to compute con?dence intervals.
2 Introduction
The empirical bootstrap is a statistical technique popularized by Bradley Efron in 1979. Though remarkably simple to implement, the bootstrap would not be feasible without modern computing power. The key idea is to perform computations on the data itself to estimate the variation of statistics that are themselves computed from the same data. That is, the data is ‘pulling itself up by its own bootstrap.’ (A google search of ‘by ones own bootstraps’ will give you the etymology of this metaphor.) Such techniques existed before 1979, but Efron widened their applicability and demonstrated how to implement the bootstrap e?ectively using computers. He also coined the term ‘bootstrap’ 1.
Our main application of the bootstrap will be to estimate the variation of point estimates; that is, to estimate con?dence intervals. An example will make our goal clear.
Example 1. Suppose we have data
x1, x2, . . . , xn
If we knew the data was drawn from N(μ, σ2) with the unknown mean μ and known variance
σ2 then we have seen that
x
?
1.96
√σ n
,
x
+
1.96
√σ n
is a 95% con?dence interval for μ.
Now suppose the data is drawn from some completely unknown distribution. To have a name we’ll call this distribution F and its (unknown) mean μ. We can still use the sample mean x as a point estimate of μ. But how can we ?nd a con?dence interval for μ around x? Our answer will be to use the bootstrap!
In fact, we’ll see that the bootstrap handles other statistics as easily as it handles the mean. For example: the median, other percentiles or the trimmed mean. These are statistics where, even
您可能关注的文档
- Gastritis-IsfahanUniversityofMedicalSciences.ppt
- PossibleResponsestothe1998CADERReportandSitingand.ppt
- IRAN-PhysiciansforGlobalSurvival.ppt
- 336耳鼻咽喉科学考试大纲基础知识.PDF
- 复旦大学附属眼耳鼻喉科医院表扬(信、锦旗等)汇总表.PDF
- 省份直辖市单位.PDF
- 2013年中华医学科技奖获奖项目.PDF
- Structureofthesystem-ICRIER.ppt
- 国泰医院耳鼻喉科认识小儿中耳炎-认识小儿中耳炎.PDF
- 我院肝胆外科率先采用微创技术.PDF
文档评论(0)