- 1、本文档共16页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
数据展现专题 数据可视化 数据可视化,是关于数据视觉表现形式的科学技术研究。其中,这种数据的视觉表现形式被定义为,一种以某种概要形式抽提出来的信息,包括相应信息单位的各种属性和变量。 它是一个处于不断演变之中的概念,其边界在不断地扩大。主要指的是技术上较为高级的技术方法,而这些技术方法允许利用图形、图像处理、计算机视觉以及用户界面,通过表达、建模以及对立体、表面、属性以及动画的显示,对数据加以可视化解释。与立体建模之类的特殊技术方法相比,数据可视化所涵盖的技术方法要广泛得多。 数据可视化的基本概念 ①数据空间:是由n维属性和m个元素组成的数据集所构成的多维信息空间; ②数据开发:是指利用一定的算法和工具对数据进行定量的推演和计算; ③数据分析:指对多维数据进行切片、块、旋转等动作剖析数据,从而能多角度多侧面观察数据; ④数据可视化:是指将大型数据集中的数据以图形图像形式表示,并利用数据分析和开发工具发现其中未知信息的处理过程。 数据可视化已经提出了许多方法,这些方法根据其可视化的原理不同可以划分为基于几何的技术、面向像素技术、基于图标的技术、基于层次的技术、基于图像的技术和分布式技术等等。 数据可视化的基本手段 数据可视化主要是借助于图形化手段,清晰有效地传达与沟通信息。但是,这并不就意味着,数据可视化就一定因为要实现其功能用途而令人感到枯燥乏味,或者是为了看上去绚丽多彩而显得极端复杂。为了有效地传达思想概念,美学形式与功能需要齐头并进,通过直观地传达关键的方面与特征,从而实现对于相当稀疏而又复杂的数据集的深入洞察。然而,设计人员往往并不能很好地把握设计与功能之间的平衡,从而创造出华而不实的数据可视化形式,无法达到其主要目的,也就是传达与沟通信息。 数据可视化与信息图形、信息可视化、科学可视化以及统计图形密切相关。当前,在研究、教学和开发领域,数据可视化乃是一个极为活跃而又关键的方面。“数据可视化”这条术语实现了成熟的科学可视化领域与较年轻的信息可视化领域的统一。 大数据时代的数据可视化背景 随着云和大数据时代的来临,数据可视化产品已经不再满足于使用传统的数据可视化工具来对数据仓库中的数据抽取、归纳并简单的展现。传统的数据可视化工具仅仅将数据加以组合,通过不同的展现方式提供给用户,用于发现数据之间的关联信息。新型的数据可视化产品必须满足互联网爆发的大数据需求,必须快速的收集、筛选、分析、归纳、展现决策者所需要的信息,并根据新增的数据进行实时更新。因此,在大数据时代,数据可视化工具必须具有以下特性: 大数据时代的数据可视化特点 (1)实时性:数据可视化工具必须适应大数据时代数据量的爆炸式增长需求,必须快速的收集分析数据、并对数据信息进行实时更新; (2)简单操作:数据可视化工具满足快速开发、易于操作的特性,能满足互联网时代信息多变的特点; (3)更丰富的展现:数据可视化工具需具有更丰富的展现方式,能充分满足数据展现的多维度要求; (4)多种数据集成支持方式:数据的来源不仅仅局限于数据库,数据可视化工具将支持团队协作数据、数据仓库、文本等多种方式,并能够通过互联网进行展现。 数据可视化的主要应用(1) 为什么会有“巴士群”现象 数据可视化的主要应用(2) 按年龄段分布的美国人口百分比 数据可视化的主要应用(3) 京东618数据实时战报 数据可视化的主要应用(4) 奔驰销售 数据可视化的主要应用(5) 经济普查 数据可视化的主要应用(6) 数据可视化的主要应用(8) 数据可视化的主要应用(9) 投篮分析 数据可视化的主要应用(10) 比分分析 数据可视化的背后技术 Excel Excel作为一个入门级工具,是快速分析数据的理想工具,也能创建供内部使用的数据图,但是Excel在颜色、线条和样式上课选择的范围有限,这也意味着用Excel很难制作出能符合专业出版物和网站需要的数据图 Google Chart API Google Chart提供了一种非常完美的方式来可视化数据,提供了大量现成的图标类型,从简单的线图表到复杂的分层树地图等。它还内置了动画和用户交互控制。 D3 D3(Data Driven Documents)是支持SVG渲染的另一种JavaScript库。但是D3能够提供大量线性图和条形图之外的复杂图表样式,例如Voronoi图、树形图、圆形集群和单词云等。 R R语言是主要用于统计分析、绘图的语言和操作环境。虽然R主要用于统计分析或者开发统计相关的软件,但也有用作矩阵计算。其分析速度可比美GNUOctave甚至商业软件MATLAB。 ………… 人类的大脑对视觉信息的处理优于对文本的处理——因此使用图表、图形和设计元素,数据可视化可以帮你更容易的解释趋势和统计数据。 * 人类的大脑对视觉信息的处理优于对
您可能关注的文档
最近下载
- 小学生助人为乐PPT帮助他人快乐自己主题班会演讲ppt.pptx
- 3104112《心理健康与职业生涯学习指导》(答案).pdf VIP
- 企业文化与商业伦理(东北大)中国大学MOOC慕课 客观题答案.docx
- TCHSA-013-2023-牙周病患者正畸治疗指南.pdf VIP
- 云米互联网洗衣机(10KG)-产品说明书.pdf
- 小学语文主题式大单元整体教学研究课题报告(立项) .pdf
- 六年级下册道德与法治第4课《地球—我们的家园》第一课时 教案教学设计.doc
- 《心理健康》大学主题班会.ppt VIP
- IBM-长安汽车基于产品为主线的组织及管理体系诊断项目_福特案例研究-2016.pptx VIP
- 2023北京海淀三年级(上)期末语文试卷含答案.docx
文档评论(0)