标准差及标准误.docxVIP

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
标准差 标准差(Standard Deviation),也称/view/1024670.htm \t _blank均方差(mean square error),是各数据偏离/view/687354.htm \t _blank平均数的距离的平均数,它是离均差平方和平均后的方根,用σ表示。标准差是方差的/view/107737.htm \t _blank算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。标准差(Standard Deviation),在概率统计中最常使用作为统计分布程度(statistical dispersion)上的测量。标准差定义为方差的算术平方根,反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质: 为非负数值, 与测量资料具有相同单位。 一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。标准计算公式 假设有一组数值X1,X2,X3,......Xn(皆为实数),其平均值为μ,公式如图1. 图1 标准差也被称为标准偏差,或者实验标准差,公式如图2。 图2 简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。 例如,两组数的集合 {0, 5, 9, 14} 和 {5, 6, 8, 9} 其平均值都是7,但第二个集合具有较小的标准差。 标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越细,代表回报较为稳定,风险亦较小。 例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.078分,B组的标准差为2.16分(此数据是在R统计软件中运行获得),说明A组学生之间的差距要比B组学生之间的差距大得多。如是总体,/view/3190315.htm \t _blank标准差公式根号内N=n,如是/view/315109.htm \t _blank样本,标准差公式根号内N=(n-1),因为我们大量接触的是样本,所以普遍使用根号内除以(n-1)。公式意义 所有数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一,即变异数),再把所得值开根号,所得之数就是这组数据的标准差。 深蓝区域是距平均值小于一个标准差之内的数值范围。在正态分布中,此范围所占比率为全部数值之68%。根据正态分布,两个标准差之内(深蓝,蓝)的比率合起来为95%。根据正态分布,三个标准差之内(深蓝,蓝,浅蓝)的比率合起来为99%。正态分布标准差的意义 标准计算公式 假设有一组数值(皆为实数),其平均值为: 此组数值的标准差为:  样本标准差 在真实世界中,除非在某些特殊情况下,找到一个总体的真实的标准差是不现实的。大多数情况下,总体标准差是通过随机抽取一定量的样本并计算样本标准差估计的。 从一大组数值当中取出一样本数值组合 ,常定义其样本标准差: 样本方差s是对总体方差σ的无偏估计。 s中分母为 n- 1 是因为样本的自由度为n-1 ,这是由于存在约束条件 。 这里示范如何计算一组数的标准差。例如一群儿童年龄的数值为 { 5, 6, 8, 9 } :  第一步,计算平均值  第二步,计算标准差 σ=σ=σ=σ= 此为标准差离散度标准差是反应一组数据离散程度最常用的一种量化形式,是表示精确度的重要指标。说起标准差首先得搞清楚它出现的目的。我们使用方法去检测它,但检测方法总是有误差的,所以检测值并不是其真实值。检测值与真实值之间的差距就是评价检测方法最有决定性的指标。但是真实值是多少,不得而知。因此怎样量化检测方法的准确性就成了难题。这也是临床工作质控的目的:保证每批实验结果的准确可靠。 虽然样本的真实值是不可能知道的,但是每个样本总是会有一个真实值的,不管它究竟是多少。可以想象,一个好的检测方法,其检测值应该很紧密的分散在真实值周围。如果不紧密,与真实值的距离就会大,准确性当然也就不好了,不可能想象离散度大的方法,会测出准确的结果。因此,离散度是评价方法的好坏的最重要也是最基本的指标。 一组数据怎样去评价和量化它的离散度呢?人

文档评论(0)

shaoye348 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档