- 1、本文档共17页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于神经网络的入侵检测技术
摘要:关于神经网络与入侵检测技术的结合一直是网络安全问题研究的一个热点,本文介绍了网络发展带来的问题,并详细阐述了入侵检测技术的基本概况,接着说明神经网络在入侵检测中的应用,最后对其提出了一些展望。
关键词:神经网络 入侵检测 激励函数 模型
Abstract:On neural network and intrusion detection technology combined with network security issues has been a research focus, this paper brings the issue of network development, and elaborated on the basic overview of intrusion detection technology, and then the neural network intrusion detection Finally, some prospects of its proposed.
Key words:neural network intrusion Detection Activation function model
1 引言
伴随着计算机网络技术的快速发展,网络的安全问题也日益突出,网络安全的一个主要威胁就是通过网络对信息系统的人侵。特别是系统中一些敏感及关键信息,经常遭受恶意和非法用户的攻击,使得这些信息被非法获取或破坏,造成严重的后果。目前在各个领域的计算机犯罪和网络非法入侵,无论是数量,手段,还是性质、规模,已经到了令人咋舌的地步。据统计,美国每年由于网络安全问题而造成的经济损失超过170亿美元,德国、英国也均在数十亿美元以上,法国、新加坡等其它国家问题也很严重[1]。在国际刑法界列举的现代社会新型犯罪排行榜上,计算机犯罪已名列榜首。2008年,CSI/FBI调查所接触的524个组织工作中,有56%遇到电脑安全事件,其中有38%遇到1-5起,16%以上遇到11起以上。因与互联网连接而成为频繁攻击点的组织连续3年不断增加,遭受拒绝服务攻击则从2005年的27%上升到2008的42%。所以,对网络及其信息的保护成为重要课题。对于网络安全现有的解决方案,我们知道防火墙、加密技术等都属于静态的防护手段,只能够被动的防御攻击,而对于已经发生的攻击则束手无策。鉴于此,能动态、主动地实现网络防卫的实时人侵检测技术日益成为网络安全领域的一个关键技术。
神经网络NN (Neural Network)具有检测准确度高且有良好的非线性映射和自学习能力、建模简单、容错性强等优点。神经网络技术具备相当强的攻击模式分析能力,能够较好地处理带噪声的数据,在概念和处理方法上都适合入侵检测
系统的要求,已成为入侵检测技术领域研究的热点之一[2]。但由于传统的入侵检测技术存在着规则库难于管理、统计模型难以建立以及较高的误报率和漏报率等诸多问题,制约了入侵检测系统在实际应用中的效果。因此针对目前入侵检测系统存在的各种缺点和不足,提出了将神经网络运用于入侵检测的概念模型。网络入侵检测问题本质上是获取网络上的数据流量信息并根据一定的方法进行分析,来判断是否受到了攻击或者入侵,因此,入侵检测问题可以理解为模式识别问题。而人工神经网络是一种基于大量神经元广泛互联的数学模型,具有自学习、自组织、自适应的特点,在模式识别领域的应用取得了良好的效果。利用神经网络技术的自学习能力、联想记忆能力和模糊运算能力,可以对各种入侵和攻击
进行识别和检测。
基于这个思路,将神经网络技术和入侵检测技术相结合,建立了一个基于神经网络的入侵检测系统模型并实现了一个基于BP(Back Propagation)神经网络的入侵检测系统的原形,对原有的误差返向传播算法进行了改进以太提高收敛速度,然后对一些实际数据进行了测试和分析,在检测率,漏报率,误报率等方面取得了较好的效果。
2 入侵检测技术概况
2.1入侵检测介绍
2.1.1入侵检测的基本概念
入侵(Intrusion)是指任何试图破坏资源完整性、机密性和可用性或可控性的行为。完整性是指数据未经授权不能改变的特性;机密性是指信息不泄漏给非授权用户、实体或过程,或供其利用的特性;可用性是可被授权实体访问并按要求使用的特性;可控性是指对信息传播及内容具有控制能力。作为一个广义的概念,入侵不仅包括发起攻击的人(如恶意的黑客)取得超出合法范围的系统控制权,也包括用户对于系统资源的误用,收集漏洞信息造成拒绝访问(Denial of Service)等对计算机系统造成危害的行为。
入侵检测(Intrusion Detection),顾名思义,是指对于面向计算资源和网络资源的恶意
文档评论(0)