《计量经济学》多重共线性.pptVIP

《计量经济学》多重共线性.ppt

此“经济”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共45页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
《计量经济学》多重共线性

X1和X2前的参数?1、?2并不反映各自与被解释变量之间的结构关系,而是反映它们对被解释变量的共同影响。?1、?2已经失去了应有的经济含义,于是经常表现出似乎反常的现象:例如?1本来应该是正的,结果恰是负的。 另一案例——中国粮食生产函数 根据理论和经验分析,影响粮食生产(Y)的主要因素有: 农业化肥施用量(X1);粮食播种面积(X2) 成灾面积(X3); 农业机械总动力(X4); 农业劳动力(X5) 1、用OLS法估计上述模型: R2接近于1; 给定?=5%,得F临界值 F0.05(5,12)=3.11 F=638.4 15.19, 故认上述粮食生产的总体线性关系显著成立。 但X4 、X5 的参数未通过t检验,且符号不正确,故解释变量间可能存在多重共线性。 2、检验简单相关系数 发现: X1与X4间存在高度相关性。 3、找出最简单的回归形式 可见,应选第1个式子为初始的回归模型。 4、逐步回归 将其他解释变量分别导入上述初始回归模型,寻找最佳回归方程。 回归方程以Y=f(X1,X2,X3)为最优: 五、 多重共线性的补救措施 本节基本内容: ●修正多重共线性的经验方法 ●逐步回归法 1、修正多重共线性的经验方法 (1). 剔除变量法 把方差扩大因子最大者所对应的自变量首先 剔除再重新建立回归方程,直至回归方程中 不再存在严重的多重共线性。 注意: 若剔除了重要变量,可能引起模型的设 定误差。 (2). 增大样本容量 如果样本容量增加,会减小回归参数的方差, 标准误差也同样会减小。因此尽可能地收集足 够多的样本数据可以改进模型参数的估计。 问题:增加样本数据在实际计量分析中常面临 许多困难。 (3). 变换模型形式(一般适用于时间序列数据) 一般而言,差分后变量之间的相关性要比差分 前弱得多,所以差分后的模型可能降低出现共 线性的可能性,此时可直接估计差分方程。 问题:差分会丢失一些信息,差分模型的误差 项可能存在序列相关,可能会违背经典线性回 归模型的相关假设,在具体运用时要慎重。 (4). 利用非样本先验信息 通过经济理论分析能够得到某些参数之间的关 系,可以将这种关系作为约束条件,将此约束 条件和样本信息结合起来进行约束最小二乘估计。 (5). 横截面数据与时序数据并用 首先利用横截面数据估计出部分参数,再利用 时序数据估计出另外的部分参数,最后得到整 个方程参数的估计。 注意:这里包含着假设,即参数的横截面估计和 从纯粹时间序列分析中得到的估计是一样的。 (6). 变量变换 变量变换的主要方法: (1)计算相对指标 (2)将名义数据转换为实际数据 (3)将小类指标合并成大类指标 (4)对数变换 变量数据的变换有时可得到较好的结果,但无 法保证一定可以得到很好的结果。 2、逐步回归法 (1)用被解释变量对每一个所考虑的解释变量做简单回归。 (2)以对被解释变量贡献最大的解释变量所对应的回归方程为基础,按对被解释变量贡献大小的顺序逐个引入其余的解释变量。 (a)若新变量的引入改进了 和 检验,且回归参 数的t 检验在统计上也是显著的,则在模型中保 留该变量。 (b)若新变量的引入未能改进 和 检验,且对其他回归参数估计值的t 检验也未带来什么影响,则认为该变量是多余变量。 (c)若新变量的引入未能改进 和 检验,且显著地影响了其他回归参数估计值的数值或符号,同时本身的回归参数也通不过t 检验,说明出现了严重的多重共线性。 (d)已被引入回归方程的变量在引入新变量后,也可能失去重要性而被剔除。 六、案例分析 一、研究的目的要求 提出研究的问题——为了规划中国未来国内旅游产业 的发展,需要定量地分析影响中国国内旅游市场发展 的主要因素。 二、模型设定及其估计 影响因素分析与确定——影响因素主要有国内旅游 人数 ,城镇居民人均旅游支出 ,农村居民人均 旅游支出 ,并以铁路里程 作为相关基础设 施的代表 理论模型的设定 其中 : ——第 t 年全国国内旅游收入 数据的收集与处理 1994年—2011年中国旅游收入及相关数据 年份 国内旅游收入Y(亿元) 国内旅游人数X2(万人次) 城镇居民人均旅游花费X3(元) 农村居民人均旅游花费X4 (元) 铁路里程X5(万公里) 1994 1023.5 52400 414.7 54.9 5.90 1995 1375.7 62900 464.0 61.5 5.97 1996 1638.4 63900 534.1 70.5 6.49

文档评论(0)

panguoxiang + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档