sift算法小結.doc

  1. 1、本文档共5页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
sift算法小結

SIFT算法小结 1 SIFT 发展历程 SIFT算法由D.G.Lowe 1999年提出,2004年完善总结。后来Y.Ke将其描述子部分用PCA代替直方图的方式,对其进行改进。 2 SIFT 主要思想 SIFT算法是一种提取局部特征的算法,在尺度空间寻找极值点,提取位置,尺度,旋转不变量。 3 SIFT算法的主要特点: a) SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性。 b) 独特性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配[23]。 c) 多量性,即使少数的几个物体也可以产生大量SIFT特征向量。 d) 高速性,经优化的SIFT匹配算法甚至可以达到实时的要求。 e) 可扩展性,可以很方便的与其他形式的特征向量进行联合。 SIFT算法步骤: 检测尺度空间极值点 精确定位极值点 为每个关键点指定方向参数 关键点描述子的生成 SIFT算法详细 ▲尺度空间的生成 尺度空间理论目的是模拟图像数据的多尺度特征。 高斯卷积核是实现尺度变换的唯一线性核[],于是一副二维图像的尺度空间定义为: (1) 其中 是尺度可变高斯函数, (2) (x,y)是空间坐标,是尺度坐标。 为了有效的在尺度空间检测到稳定的关键点,提出了高斯差分尺度空间(DOG scale-space)。利用不同尺度的高斯差分核与图像卷积生成。 (3) DOG算子计算简单,是尺度归一化的LoG算子的近似。 图像金字塔的构建:图像金字塔共O组,每组有S层,下一组的图像由上一组图像降采样得到。 图1由两组高斯尺度空间图像示例金字塔的构建, 第二组的第一副图像由第一组的第一副到最后一副图像由一个因子2降采样得到。 图2 DoG算子的构建: 图1 Two octaves of a Gaussian scale-space image pyramid with s =2 intervals. The first image in the second octave is created by down sampling the second to last image in the previous 图2 The difference of two adjacent intervals in the Gaussian scale-space pyramid create an interval in the difference-of-Gaussian pyramid (shown in green). ▲空间极值点检测 为了寻找尺度空间的极值点,每一个采样点要和它所有的相邻点比较,看其是否比它的图像域和尺度域的相邻点大或者小。如图3所示,中间的检测点和它同尺度的8个相邻点和上下相邻尺度对应的9×2个点共26个点比较,以确保在尺度空间和二维图像空间都检测到极值点。 构建尺度空间需确定的参数 -尺度空间坐标 O-octave坐标 S- sub-level 坐标 和O、S的关系, 其中是基准层尺度。o-octave坐标,s- sub-level 坐标。注:octaves 的索引可能是负的。第一组索引常常设为0或者-1,当设为-1的时候,图像在计算高斯尺度空间前先扩大一倍。 空间坐标x是组octave的函数,设是0组的空间坐标,则 如果是基础组o=0的分辨率,则其他组的分辨率由下式获得: 注:在Lowe的文章中,Lowe使用了如下的参数: 在组o=-1,图像用双线性插值扩大一倍(对于扩大的图像)。 精确确定极值点位置 通过拟和三维二次函数以精确确定关键点的位置和尺度(达到亚像素精度),同时去除低对比度的关键点和不稳定的边缘响应点(因为DoG算子会产生较强的边缘响应),以增强匹配稳定性、提高抗噪声能力。 边缘响应的去除 一个定义不好的高斯差分算子的极值在横跨边缘的地方有较大的主曲率,而在垂直边缘的方向有较小的主曲率。主曲率通过一个2x2 的Hessian矩阵H求出: (4) 导数由采样点相邻差估计得到。 D的主曲率和H的特征值成正比,令为最大特征值,为最小的特征值,则 令,则: (r + 1)2/r的值在两个特征值相等的时候最小,随着r的增大而增大,因此,为了检测主曲率是否在某域值r下,只需检测 在Lowe的文章中,取r=10。 关键点方向分配 利用关键点邻域像素的梯度方

文档评论(0)

haihang2017 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档