X射线衍射测定陶瓷晶格的点阵常数副本.docVIP

X射线衍射测定陶瓷晶格的点阵常数副本.doc

  1. 1、本文档共15页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
X射线衍射测定陶瓷晶格的点阵常数副本

实验一 X射线衍射谱 1895年,德国医生兼教授伦琴(R. W. C. Roentgen)发现X伦琴因X发现获得了第一届诺贝尔物理学奖。1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光栅,即当一束 X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。1913年英国物理学家布拉格父子(W. H. Bragg and W. L. Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式 ─ 布拉格定律。 1913年后,X射线衍射现象在晶体学领域得到迅速发展。它很快被应用于研究金属、合金无机化合物的晶体结构,出现了许多具有重大意义的结果。被广泛地应用于物相分析、结构分析、精密测定点阵参数、单晶和多晶的取向分析、晶粒大小和微观应力的测定、宏观应力的测定、以及对晶体结构不完整性等。 一、实验目的 1)了解X射线衍射技术的原理和方法。 (2)学会用Materials StudioX射线衍射谱,钙钛矿型陶瓷材料的晶格点阵常数、Miller指数、及晶面间距。对结构进行鉴定。 二、实验原理 1.单晶体的X (1)X 德国物理学家劳厄首先提出,晶体通过它的三维点阵结构可以使X射线产生衍射。 晶体由原子组成,当射线射入晶体时,由于射线是电磁波,在晶体中产生周期性变化的电磁波,迫使原子中的电子和原子核其周期性振动。一般原子核的核质比要比电子小的多,在讨论这种振动时,可将原子核的振动略去。振动着的电子就成了一个发射新的电磁波的波源,以球面波的方式往四面八方散发出频率相同的电磁波,入射射线虽按一定的方向射入晶体,但和晶体中的电子发生作用后,就由电子向各个方向发射射线,因此射线进入晶体后的一部分改变了方向,往四面八方散发,这种现象叫散射。在原子系统中,所有电子的散射波都可以近似看成由原子中心发出,所以原子是散射波的中心。原子散射射线的能力和原子中所含电子数目成正比,电子越多,散射能力越强。由于晶体中原子排列的周期性,周期排列散射波中心发出的相干散射波将互相干涉、互相叠加,因而在某一方向得到加强的现象称为衍射。而最大程度加强的方向称为衍射方向。 射线照到晶体上产生的衍射花样除与射线有关外,主要是受晶体结构的影响,晶体结构与衍射花样之间有一定的内在联系,通过衍射花样的分析就能测定晶体结构研究与结构相关的一系列问题,衍射线束的方向由晶胞的形状、大小决定,衍射线束的强度由晶胞中原子的位置和种类决定。 衍射线束的方向可以用布拉格定律来描述。在引入倒易点阵后,还能用衍射矢量方程来进行描述。 (2) 1912年英国物理学家布拉格父子从射线被原子反射的观点出发,提出了非常重要和实用的布拉格定律。 首先考虑一层原子面上散射X射线的干涉。如图1.1(a)所示,当X射线以θ角入射到原子面并以β角散射时,相距为a的两原子散射X射线的光程差为 (1.1) 根据光的干涉原理,当光程差等于波长的整数倍(nλ)时,在β角散射方向干涉加强。假定原子面上所有原子的散射线同相位,即光程差δ = 0,从式(1.1)可得β = θ。也就是说,当入射角与散射角相等时,一层原子面上所有的散射波干涉将会加强。与可见光的反射定律相似,X射线从一层原子面呈镜面反射的方向,就是散射线干涉加强的方向。因此,常将这种散射称为晶面反射。 X射线有强的穿透能力,在X射线的作用下晶体的散射线来自若干层原子面,除同一层原子面的散射线相互干涉外,各原子面的散射线之间还要相互干涉。假定原子面之间的间距为d,现用图1.1(b)讨论原子面间散射波的干涉加强条件。这里需要讨论两相邻原子面的散射波的干涉即可。过D点分别向入射线和反射线作垂线,则AD之前和CD之后两束射线的光程相同,它们的光程差为δ = AB + BC = 2dsinθ。当光程差等于波长的整数倍时,相邻原子面散射波加强,既干涉加强条件为 (1.2) 上式称为布拉格定律或布拉格方程。式中d为晶面间距;θ为入射线、反射线与反射晶面之间的交角,称掠射角或布拉格角,而2θ为入射线与反射线之间的夹角,称衍射角;n为整数,称反射级数;λ为入射线波长。这个公式把衍射方向、平面点阵族的间距d和X射线的波长λ联系起来了。 当波长一定时,对指定的某一族平面点阵(hkl)来说,n数值不同,衍射的方向也不同,n = 1,2,3,…,相应的衍射角θ为θ1,θ2,

文档评论(0)

panguoxiang + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档