二章流体输送机械.pptVIP

  1. 1、本文档共31页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
二章流体输送机械

第二章 流体输送机械 本章学习指导 1 本章学习的目的 本章是流体力学原理的具体应用。通过学习掌握工业上最常用的流体输送机械的基本结构、工作原理及操作特性,以便根据生产工艺的要求,合理地选择和正确地使用输送机械,以实现高效、可靠、安全的运行。 2 本章应掌握的内容 本章应重点掌握离心泵的工作原理、操作特性及其选型。 3 本章学习中应注意的问题 在学习过程中,加深对流体力学原理的理解,并从工程应用的角度出发,达到经济、高效、安全地实现流体输送。 流体输送机械是指为流体提供机械能的机械设备 分类: (1)动力式:借助于高速旋转的叶轮使流体获得能 量。包括离心式、轴流式输送机械 (2)容积式:利用活塞或转子的挤压使流体升压以获得能量。包括往复式、旋转式输送机械 (3)流体作用式:依靠能量转换原理以实现输送流体任务。如喷射泵 第一节 液体输送机械——离心泵 离心泵的主要部件 离心泵的工作原理 离心泵的性能参数 离心泵的特性曲线 影响离心泵性能的因素和性能换算 离心泵的气蚀现象与安装高度 离心泵的工作点与流量调节 离心泵的类型与选择 (一)离心泵的主要部件 包括叶轮和泵轴的旋转部件 由泵壳、填料函和轴承组成的静止部件 (二)离心泵的工作原理 液体随叶轮旋转,在惯性离心力的作用下自叶轮中心被甩向外周并获得了能量,使流向叶轮外周的液体的静压强提高,流速增大。液体离开叶轮进入蜗壳,因蜗壳内流道逐渐扩大而使流体速度减慢,液体的部分动能转换成静压能。于是,具有较高压强的液体从泵的排出口进入排出管路,被输送到所需的管路系统。 离心泵的性能参数 1.流量(Q) : 离心泵在单位时间送到管路系统的液体体积,常用单位为L/s或m3/h; 2.压头(H) :离心泵对单位重量的液体所能提供的有效能量,其单位为m; 3.效率(?) :由原动机提供给泵轴的能量不能全部为液体所获得,通常用效率来反映能量损失; 4.轴功率(N): [指离心泵的泵轴所需的功率,单位为W或kW 离心泵的能量损失 ?反映离心泵能量损失,包括: 容积损失:由于崩的泄漏所造成的损失。一部份已获得能量的高压液体由叶轮出口处通过叶轮与泵壳间的缝隙或从平衡孔漏返回到叶轮入口处的低压区造成的能量损失。 水力损失:进入离心泵的粘性液体产生的摩擦阻力以及在泵的局部处因流速与方向改变引起的环流和冲击而产生的局部阻力。 机械损失:由泵轴与轴承之间、泵轴与填料函之间以及叶轮盖板外表面与液体之间产生的机械摩擦引起的能量损失。 离心泵的特性曲线 通常,离心泵的特性曲线由制造厂附于泵的样本或说明书中,是指导正确选择和操作离心泵的主要依据。 1. H-Q曲线:表示泵的压头与流量的关系 2. N-Q曲线:表示泵的轴功率与流量的关系 3.η-Q曲线:表示泵的效率与流量的关系 离心泵的压头H一般是随流量Q的增大而下降,这是离心泵的一个重要特性。 离心泵的有效功率是指液体从叶轮获得的实际能量,通常用Ne表示,其可由泵的流量和扬程求得 影响离心泵性能的因素和性能换算 1.液体物性的影响 (a)密度的影响 (b)黏度的影响 2.离心泵转速的影响 3.离心泵叶轮直径的影响 由离心泵的基本方程可看出,离心泵的压头、流量均与液体的密度无关,说明 离心泵特性曲线中的H—Q及?—Q曲线保持不变。但离心泵所需的轴功率则随液体密度的增加而增加,即 N—Q曲线要变,此时泵的轴功率可按式(2-14)重新计算。 转速变化特性曲线变化, 在转速变化小于±20%范围内 1.离心泵的气蚀现象 2.离心泵的抗气蚀性能 a.离心泵的气蚀余量 b.离心泵的允许吸上真空度 3.离心泵的允许安装(吸上)高度 当泵叶片入口附近的最低压强等于或小于输送温度下液体饱和蒸 汽压时,部分液体将在该处汽化并产生的汽泡,被液流带入叶轮内压力较高处凝结或破裂。由于凝结点处产生瞬间真空,造成周围液体高速冲击该点,产生剧烈的水击。 离心泵的气蚀余量 在泵入口1-1ˊ和叶轮入口k-kˊ两截面间列柏努利方程式,可得 离心泵的允许吸上真空度 Hsˊ值的大小与泵的结构、流量、被输送液体的性质及当地大气压等因素有关。通常由泵的制造工厂在98.1kPa下,用20 ℃为介质进行测定。若输送其他液体,或操作条件与上述的实验条件不同时,应按下式进行换算,即 假设离心泵在可允许的安装高度下操作,于储槽液面0-0ˊ与泵入口处1-1ˊ两截面间列柏努利方程式,可得避免发生汽蚀离心泵的允许安装高度 Hg, 离心泵的工作点与流量调节 离心泵在一定转速下有一最高效率点,该点称为设计点,设计点对应的流量、压头和轴功率称为额定流量、额定压头和额定轴功率,标注在泵的铭牌上。一般将最高效率值的

文档评论(0)

118books + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档