网站大量收购闲置独家精品文档,联系QQ:2885784924

模式分类英文课件prch5partding.pptVIP

模式分类英文课件prch5partding.ppt

此“教育”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共18页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
模式分类英文课件prch5partding

Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley Sons, 2000 with the permission of the authors and the publisher 5.4 The Two-Category Linearly Separable Case Linearly separable n samples belong to , if there exits a linear discriminant function that classifies all of them correctly, the samples are said to be linearly separable. Weight vector a is called a separating vector or solution vector Normalization Replacing all samples labeled by their negatives is called normalization with this normalization we only need to look for a weight vector a such that Solution Region Margin the distance between old boundaries and new boundaries is The problem of finding a linear discriminant function will be formulated as a problem of minimizing a criterion function Gradient Descent Procedures define a criterion function that is minimized if a is a solution vector. This can often be solved by a gradient descent procedure. Choice of learning rate Note: from (12) we have Substituting this into Eq.13. and minimize J(a(k+1)), we can get Eq.(14) Newton Descent Note: Newton’s algorithm vs the simple gradient decent algorithm 5.5 Minimizing The Perception Criterion Function The Perception Criterion Function Batch Perception Algorithm Comparison of Four Criterion functions Perceptron Criterion as function of weights Single-Sample Correction Interpretation of Single-Sample Correction Some Direct Generalizations Variable-Increment Perceptron with Margin Algorithm Convergence Batch Variable Increment Perception How to Choose b Balanced Winnow Algorithm 5.6 Relaxation Procedures Decent Algorithm criterion function: two problems of this criterion function criterion function: Update rule : Batch Relaxation with Margin Single-Sample Relaxation with margin

文档评论(0)

panguoxiang + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档