网站大量收购闲置独家精品文档,联系QQ:2885784924

统计学第章 相关与回归分析.pptVIP

统计学第章 相关与回归分析.ppt

此“教育”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共94页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
统计学第章 相关与回归分析

第 7 章 相关与回归分析 第7章 相关与回归分析 7.1 变量间关系的度量 7.2 一元线性回归 7.3 利用回归方程进行估计和预测 7.4 多元线性回归分析 学习目标 1. 相关系数的分析方法 线性回归的基本原理和参数的最小二乘估计 回归直线的拟合优度 回归方程的显著性检验 利用回归方程进行估计和预测 用 Excel 进行回归 变量间的关系 函数关系 是一一对应的确定关系 设有两个变量 x 和 y ,变量 y 随变量 x 一起变化,并完全依赖于 x ,当变量 x 取某个数值时, y 依确定的关系取相应的值,则称 y 是 x 的函数,记为 y = f (x),其中 x 称为自变量,y 称为因变量 各观测点落在一条线上 函数关系 (几个例子) 相关关系 (correlation) 变量间关系不能用函数关系精确表达 一个变量的取值不能由另一个变量唯一确定 当变量 x 取某个值时,变量 y 的取值可能有几个 各观测点分布在直线周围 相关关系 (几个例子) 相关关系 (类型) 相关关系的描述与测度 (散点图) 散点图 (scatter diagram) 散点图 (例题分析) 【例】一家大型商业银行在多个地区设有分行,其业务主要是进行基础设施建设、国家重点项目建设、固定资产投资等项目的贷款。近年来,该银行的贷款额平稳增长,但不良贷款额也有较大比例的增加,这给银行业务的发展带来较大压力。为弄清楚不良贷款形成的原因,希望利用银行业务的有关数据做些定量分析,以便找出控制不良贷款的办法。下面是该银行所属的25家分行2002年的有关业务数据 散点图 (例题分析) 散点图 (例题分析) 相关关系的描述与测度 (相关系数) 相关系数 (correlation coefficient) 对变量之间关系密切程度的度量 对两个变量之间线性相关程度的度量称为简单相关系数 若相关系数是根据总体全部数据计算的,称为总体相关系数,记为? 若是根据样本数据计算的,则称为样本相关系数,记为 r 相关系数 (计算公式) ? 样本相关系数的计算公式 相关系数 (取值及其意义) r 的取值范围是 [-1,1] |r|=1,为完全相关 r =1,为完全正相关 r = -1,为完全负相关 r = 0,不存在线性相关关系相关 -1?r0,为负相关 0r?1,为正相关 |r|越趋于1表示关系越密切;|r|越趋于0表示关系越不密切 相关系数 (取值及其意义) 相关系数 (例题分析) 用Excel计算相关系数 什么是回归分析? (Regression) 从一组样本数据出发,确定变量之间的数学关系式 对这些关系式的可信程度进行各种统计检验,并从影响某一特定变量的诸多变量中找出哪些变量的影响显著,哪些不显著 利用所求的关系式,根据一个或几个变量的取值来预测或控制另一个特定变量的取值,并给出这种预测或控制的精确程度 回归分析与相关分析的区别 相关分析中,变量 x 变量 y 处于平等的地位;回归分析中,变量 y 称为因变量,处在被解释的地位,x 称为自变量,用于预测因变量的变化 相关分析中所涉及的变量 x 和 y 都是随机变量;回归分析中,因变量 y 是随机变量,自变量 x 可以是随机变量,也可以是非随机的确定变量 相关分析主要是描述两个变量之间线性关系的密切程度;回归分析不仅可以揭示变量 x 对变量 y 的影响大小,还可以由回归方程进行预测和控制 回归模型的类型 一元线性回归模型 一元线性回归 涉及一个自变量的回归 因变量y与自变量x之间为线性关系 被预测或被解释的变量称为因变量(dependent variable),用y表示 用来预测或用来解释因变量的一个或多个变量称为自变量(independent variable),用x表示 因变量与自变量之间的关系用一条线性方程来表示 回归模型 (regression model) 回答“变量之间是什么样的关系?” 方程中运用 1 个数字的因变量(响应变量) 被预测的变量 1 个或多个数字的或分类的自变量 (解释变量) 用于预测的变量 3. 主要用于预测和估计 一元线性回归模型 描述因变量 y 如何依赖于自变量 x 和误差项? 的方程称为回归模型 一元线性回归模型可表示为 y = b0 + b1 x + e y 是 x 的线性函数(部分)加上误差项 线性部分反映了由于 x 的变化而引起的 y 的变化 误差项 ? 是随机变量 反映了除 x 和 y 之间的线性关系之外的随机因素对 y 的影响 是不能由 x 和 y 之间的线性关系所解释的变异性 ?0 和 ?1 称为模型的参数 一元线性回归模型 (基本假定) 误差项ε是一个期望值为0的随机变量,即E(ε)=0。

文档评论(0)

panguoxiang + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档